US20030194731A1 - Semiconductor nanoparticle fluorescent reagent and fluorescence determination method - Google Patents

Semiconductor nanoparticle fluorescent reagent and fluorescence determination method Download PDF

Info

Publication number
US20030194731A1
US20030194731A1 US10/360,866 US36086603A US2003194731A1 US 20030194731 A1 US20030194731 A1 US 20030194731A1 US 36086603 A US36086603 A US 36086603A US 2003194731 A1 US2003194731 A1 US 2003194731A1
Authority
US
United States
Prior art keywords
fluorescence
semiconductor nanoparticle
defect
biopolymer
fluorescent reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/360,866
Inventor
Keiichi Sato
Susumu Kuwabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Software Engineering Co Ltd
Original Assignee
Hitachi Software Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Software Engineering Co Ltd filed Critical Hitachi Software Engineering Co Ltd
Assigned to HITACHI SOFTWARE ENGINEERING CO., LTD. reassignment HITACHI SOFTWARE ENGINEERING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUWABATA, SUSUMU, SATO, KEIICHI
Assigned to HITACHI SOFTWARE ENGINEERING CO., LTD. reassignment HITACHI SOFTWARE ENGINEERING CO., LTD. CORRECTIVE TO CORRECT THE YEAR OF THE EXECUTION DATES PREVIOUSLY RECORDED AT REEL 013759 FRAME 0697. (ASSIGNMENT OF ASSIGNOR'S INTEREST) Assignors: KUWABATA, SUSUMU, SATO, KEIICHI
Publication of US20030194731A1 publication Critical patent/US20030194731A1/en
Priority to US11/389,151 priority Critical patent/US8003409B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00572Chemical means
    • B01J2219/00576Chemical means fluorophore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2989Microcapsule with solid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to a fluorescent reagent using semiconductor nanoparticles, and a fluorescence determination method using semiconductor nanoparticles.
  • Semiconductor nanoparticles can be easily prepared by dissolving equimolar amounts of precursors of Cd and X (X being S, Se or Te). This is also true for their manufacture using CdSe, ZnS, ZnSe, HgS, HgSe, PbS, or PbSe, for example.
  • semiconductor nanoparticles are attracting attention is that since semiconductor nanoparticles are characterized by emitting strong fluorescence with a narrow full width at half maximum, the creation of various colors of fluorescence is possible. Thus, it is considered that future applicable fields are almost unlimited.
  • semiconductor nanoparticles obtained by the above method exhibit a wide grain-size distribution and therefore cannot provide the full advantage of the properties of semiconductor nanoparticles.
  • Semiconductor nanoparticles obtained by these methods exhibit a spectrum having a peak with a relatively narrow full width at half maximum (FWHM).
  • FWHM full width at half maximum
  • semiconductor nanoparticles emit defect fluorescence that is completely different from fluorescence arising from an energy level existing in the forbidden band of energy levels inside semiconductor nanoparticles.
  • the energy level that emits the defect fluorescence is presumably derived from the presence of a defect level mainly on the surface site of semiconductor nanoparticles and is considered to inhibit the properties of semiconductor nanoparticles exhibiting a spectrum with a narrow FWHM, and thus this has been a problem to be solved.
  • FIG. 2 when semiconductor nanoparticles are prepared using a size-selective optical etching method or the like, the phenomena may be observed where defect fluorescence generated from the defect level is more strongly emitted than inherent fluorescence generated from the band gap inside the semiconductor nanoparticles.
  • fluorescence that is exhibited due to the presence of a defect level mainly on the surface site of semiconductor nanoparticles is called “defect fluorescence.”
  • the present inventors have made intensive studies and succeeded in solving the above problem by, conversely, making positive use of defect fluorescence, which heretofore had been considered as something that obstructs various measurements utilizing the inherent fluorescence emission of semiconductor nanoparticles. Namely, in addition to fluorescence having an energy level existing in the forbidden band of energy levels inside semiconductor nanoparticles, the use of defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of semiconductor nanoparticles has provided the solution to the above problem.
  • a fluorescent reagent of the present invention is characterized by measuring defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of semiconductor nanoparticles.
  • the fluorescent reagent of the present invention is preferably used, for example, for the detection of biopolymers.
  • the detection of biopolymers can use DNA chips or beads using hybridization.
  • DNA chips or beads can be used when the biopolymers are DNAs or proteins.
  • the fluorescent reagent of the present invention is preferably used for vital observation.
  • it can be used as a stain for living tissues in cell technologies.
  • the fluorescent reagent of the present invention can be chemically bound to the biopolymers or living tissues via the modifying groups.
  • the fluorescent reagent can be electrostatically bound to the biopolymers or living tissues.
  • the surface of the semiconductor nanoparticles can be modified with functional groups.
  • defect fluorescence of the semiconductor nanoparticles can be amplified using a size-selective optical etching method.
  • a method of measuring fluorescence of the present invention comprises the step of measuring defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle.
  • the method is preferably applied to a biopolymer detection method that detects the presence or absence of and the amount of binding to probe biopolymers by electrostatically binding positively or negatively charged semiconductor nanoparticles to a negative or positive charge of sample biopolymers.
  • the biopolymer detection method measures defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle.
  • the biopolymer detection can utilize DNA chips or beads using hybridization.
  • the biopolymers are preferably DNAs or proteins.
  • the measurement method include application to vital observation.
  • the vital observation that utilizes semiconductor nanoparticles as stains for living tissues in cell technologies may be mentioned.
  • Other examples include the use of semiconductor nanoparticles as stains for living tissue such as viscera, muscle, brain, and bone.
  • the measurement method of the present invention is applicable to the biopolymer detection wherein the surfaces of the semiconductor nanoparticles are modified with functional groups, as previously filed by the present applicant in Japanese Patent Application No. 2002-27616.
  • the defect fluorescence thereof is amplified.
  • the defect fluorescence can be remarkably exhibited when excited with excitation light of a wavelength deviated from an excitation wavelength at which fluorescence emission from a band gap of the semiconductor nanoparticles exhibits a peak.
  • two or more types of defect fluorescence having different wavelengths can be measured by using two or more types of semiconductor nanoparticles, thus enabling multicolor analysis to obtain two or more types of information.
  • defect fluorescence having different spectra of a semiconductor nanoparticle can be measured by changing excitation wavelengths, and a difference between the different spectra can be obtained to enable correction of a measurement error.
  • the present invention relates to a fluorescent reagent which utilizes defect fluorescence arising from a defect level of a surface site existing inside the forbidden band of a band gap of a semiconductor nanoparticle material, and a method of measuring fluorescence.
  • band gap fluorescence attributable to the properties of a semiconductor nanoparticle material per se there are two types of fluorescence emitted from a semiconductor nanoparticle.
  • One is band gap fluorescence attributable to the properties of a semiconductor nanoparticle material per se, and the other is defect fluorescence mainly attributable to the properties of a surface site of a prepared semiconductor nanoparticle.
  • Band gap fluorescence attributable to the properties of the semiconductor nanoparticle per se can be controlled by controlling the grain size of semiconductor nanoparticles, and the control range is determined depending on the material of the semiconductor nanoparticles.
  • the band gap fluorescence exhibits a spectrum having a peak with a very narrow FWHM.
  • the defect fluorescence of semiconductor nanoparticles is not related to the grain size of semiconductor nanoparticles, and is determined depending only on the materials constituting the semiconductor nanoparticle.
  • the spectrum of the defect fluorescence has a wider FWHM compared with that of the band gap fluorescence, but the fluorescence intensity of the defect fluorescence is equal to or stronger than that of band gap fluorescence from mono-layered semiconductor nanoparticles. Therefore, when observing fluorescence of several colors, the defect fluorescence allows semiconductor nanoparticles to fully exhibit their abilities as a reagent.
  • examples of the materials to be used in the present invention include ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgS, HgSe, HgTe, InP, InAs, GaN, GAP, GaAs, TiO, WO 3 , PbS, and PbSe.
  • FIG. 1 shows the absorption spectra of semiconductor nanoparticles.
  • FIG. 2 shows the correlation between single color irradiation time and fluorescent spectrum of CdS nanoparticles.
  • FIG. 3 shows the fluorescence spectra of semiconductor nanoparticles.
  • FIG. 4 is a schematic view of positively charged semiconductor nanoparticles.
  • FIG. 5 shows the excitation spectra of semiconductor nanoparticles.
  • FIG. 6 shows the comparison of excitation wavelength characteristics between band gap fluorescence and defect fluorescence.
  • FIG. 7 shows the variations of the fluorescence characteristics by excitation wavelength.
  • CdS nanoparticles and ZnS nanoparticles are referred to for description of the method for preparing semiconductor nanoparticles according to the present invention.
  • semiconductor nanoparticles that were stabilized by hexametaphosphate already existed in the solution, but these semiconductor nanoparticles had a wide grain-size distribution, with their standard deviation being 15% or more of the average grain size.
  • the semiconductor nanoparticles in this state had very weak band gap fluorescence intensity and defect fluorescence intensity.
  • the size-selective photocorrosion is described.
  • the physical properties of the semiconductor nanoparticles in this state are averaged and their characteristics cannot be fully exhibited.
  • One of methods for carrying out the above operation is the size-selective photocorrosion.
  • the size-selective photocorrosion takes advantage of the fact that as the grain size of a semiconductor nanoparticle decreases its energy gap increases due to a quantum-size effect, and the fact that a metal chalcogenide semiconductor is oxidatively dissolved when irradiated by light in the presence of dissolved oxygen.
  • the method irradiates the semiconductor nanoparticles having a wide grain-size distribution with monochromatic light of a shorter wavelength than the wavelength of the semiconductor nanoparticles's absorption edge. This causes only the semiconductor nanoparticles of larger diameters to be selectively optically excited and dissolved, thus sorting the semiconductor nanoparticles into smaller grain sizes.
  • defect fluorescence which seems to be attributable to the energy level mainly on the semiconductor nanoparticle surface, is of relatively stronger intensity then the band gap fluorescence.
  • defect fluorescence is regarded as a factor inhibiting the properties of a semiconductor nanoparticle, and is thus treated as a problem, but in the present invention this defect fluorescence is utilized.
  • a size-selective optical etching reaction is used for the purpose of amplifying defect fluorescence.
  • Nitrogen gas was bubbled into a solution of semiconductor nanoparticles stabilized by hexametaphosphate and having a wide grain-size distribution, and then bubbling with oxygen was carried out for 10 minutes.
  • Methyl viologen was added to the solution to a concentration of 50 ⁇ mol/l, and the solution was irradiated with a laser beam under stirring.
  • the monochromatic light irradiation was carried out to optically dissolve semiconductor nanoparticles, and the wavelength of the monochromatic light was 450 nm.
  • the resultant semiconductor nanoparticles When irradiated with a light of a wavelength of 476.5 nm, the resultant semiconductor nanoparticles had an average grain size of 3.2 nm and a standard deviation of 0.19 nm, thus exhibiting a very narrow grain-size distribution where the standard deviation was about 6% of the average grain size.
  • a solution of semiconductor nanoparticles with an almost close-to-monodisperse distribution was obtained (FIG. 1). Further, the obtained semiconductor nanoparticles exhibited extremely high defect fluorescence (FIGS. 2 and 3).
  • This method employed the same stabilizer, hexametaphosphate, as the method for CdS nanoparticles. 1000 ml of an aqueous solution of sodium hexametaphosphate (0.1 mmol) and cadmium perchlorate hexahydrate (0.2 mmol) was prepared and adjusted to pH 10.3. Nitrogen gas was bubbled into the solution, and hydrogen sulfide gas (0.2 mmol) was injected into the solution while stirring vigorously. Stirring was continued for a while thereafter, during which time the solution was optically transparent and colorless. As shown in FIG.
  • semiconductor nanoparticles herein were prepared by dissolving and stirring equimolar amounts of precursors of Cd or Zn, and precursors of S, the method for their preparation is not limited thereto.
  • semiconductor nanoparticles obtained by the above methods and the like have substantial defect fluorescence, and in the case of a single obtained semiconductor nanoparticle, as a matter of course, the filed of application thereof can be further expanded by modifying the semiconductor nanoparticle surface with a functional group to produce a semiconductor nanoparticle having a functional group exposed on its surface.
  • the probe DNA 2 and the semiconductor nanoparticle 4 were negatively and positively charged, respectively, but the charges may be the reverse thereof. Proteins and the like have isoelectric points, and thus the charge of the sample DNA 3 varies between positive and negative depending on the fluctuation of pH values. When the sample DNA 3 is positively charged, a negatively charged semiconductor nanoparticle 4 may be used.
  • the semiconductor nanoparticles obtained above were positively charged and easily adsorbed onto negatively charged DNAs or proteins or the like.
  • the DNA microarray method is a method wherein: a large number of known probe DNAs are chemically immobilized on a substrate; sample DNAs to be assayed are then introduced on top of the probes; and the sequence characteristics of the samples are identified based on the presence or absence of, and the amount of, binding between the probe DNAs and sample DNAs.
  • the following method has been generally used to determine the existence of DNA binding and the amount of binding.
  • samples are modified with fluorescent substances or radioactive substances, and the existence of binding and the amount thereof is then determined by optically detecting these substances.
  • the present invention does not require pre-treatment for modifying samples, and thus has a feature of requiring no sample pre-treatment by RNA reverse transcription or PCR reaction.
  • a sample DNA solution was dropped on a DNA microarray, and a cover glass was gently placed on the mixture. Then, the mixture was reacted for 16 hours under a hermetically closed environment using CHBIO (Hitachi Software Engineering Co., Ltd.). After the reaction, a slide glass was taken out therefrom, and the slide glass was soaked in a 2 ⁇ SSC, 0.1% SDS solution and the cover glass was removed. Then, the slide glass was soaked for 2 hours in a 2 ⁇ SSC, 0.1% SDS solution having a CdS semiconductor nanoparticle concentration of 1.2 ⁇ 10 17 mol.dm ⁇ 3 .
  • the slide glass was shaken in a 2 ⁇ SSC, 0.1% SDS solution for 20 minutes at room temperature and shaken in a 0.2 ⁇ SSC, 0.1% SDS solution for 20 minutes at room temperature. Further, in order to remove non-specific adsorptive samples, the slide glass was shaken in 0.2 ⁇ SSC, 0.1% SDS solution for 20 minutes at 55° C., and the same operation was repeated. Then, the slide glass was shaken several times in 0.2 ⁇ SSC, 0.1% SDS solution at room temperature, and shaken several times at room temperature in solutions of 0.2 ⁇ SSC and 0.05 ⁇ SSC, respectively. The above soaking and washing processes were carried out using a staining jar.
  • the slide glass was then centrifuged and dried, and provided for analysis which was performed by filtering only defect fluorescence of semiconductor nanoparticles with an epi-illumination fluorescence microscope. As a result, bright red defect fluorescence was measured from each spot of the DNA microarray. According to the present example, it was found that the measurement of defect fluorescence of semiconductor nanoparticles was useful for reaction measurement in various reactions using semiconductor nanoparticles.
  • the present method is applicable to biopolymer microarrays in general, and not only to DNA microarrays but also other biopolymer microarrays and sensors such as protein microarrays, which have the same principle.
  • defect fluorescence of semiconductor nanoparticles is determined only depending on the materials constituting the semiconductor nanoparticles, and irrespective of the grain-size of semiconductor nanoparticles. Therefore, in order to achieve multicolor analysis and observation using defect fluorescence, it is necessary to use semiconductor nanoparticles formed of the same number of materials as the number of colors to be used. Herein, multicolor analysis using CdS and ZnS nanoparticles will be described.
  • CdS and ZnS nanoparticles exhibit different adsorption spectra from each other.
  • FIG. 5 shows fluorescence intensities at excitation wavelengths.
  • CdS and ZnS nanoparticles also have different excitation spectra from each other. Further, as shown in FIG. 3, they have different fluorescence spectra from each other.
  • the excitation spectra of band gap fluorescence and defect fluorescence exhibit different waveforms from each other.
  • the band gap fluorescence exhibited a peak at a wavelength of 450 nm
  • the defect fluorescence exhibited a peak at a wavelength of 520 nm.
  • FIG. 7 shows that the fluorescence spectra of semiconductor nanoparticles were different when the wavelength of excitation light was changed. Using these two different spectra, it is possible to perform error correction by computing the difference. Namely, the respective baselines of the spectra at 390 nm and 350 nm in FIG. 7 can be corrected based on the strength comparison between the respective excitation lights for standardization.
  • the present invention uses defect fluorescence inherent to semiconductor nanoparticles, and thus does not require any means such as an optical etching method or multi-layering to inhibit defect fluorescence. This allows manufacturers to employ an industrially suitable method for manufacturing semiconductor nanoparticles, and allows fluorescent reagents to be provided at a low price. Further, since defect fluorescence is fundamentally stronger than fluorescence generated from a band gap of semiconductor nanoparticles, various measurements or observations using semiconductor nanoparticles can be carried out easily and the measurement accuracy can be enhanced.

Abstract

The present invention measures defect fluorescence exhibited from a defect level mainly on a semiconductor nanoparticle surface site which has an energy level existing inside the forbidden band of energy levels inside the semiconductor nanoparticle.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field [0001]
  • The present invention relates to a fluorescent reagent using semiconductor nanoparticles, and a fluorescence determination method using semiconductor nanoparticles. [0002]
  • 2. Background Art [0003]
  • Semiconductor nanoparticles of a grain size of 10 nm or less are located in the transition region between bulk semiconductor crystals and molecules. Their physicochemical properties are therefore different from both bulk semiconductor crystals and molecules. In this region, the energy gap of a semiconductor nanoparticle increases as its grain size decreases, due to the occurrence of a quantum-size effect. In addition, the degeneracy of the energy band that is observed in bulk semiconductors is removed and the orbits are dispersed. As a result, a lower-end of the conduction band is shifted to the negative side and an upper-end of the valence band is shifted to the positive side. [0004]
  • Semiconductor nanoparticles can be easily prepared by dissolving equimolar amounts of precursors of Cd and X (X being S, Se or Te). This is also true for their manufacture using CdSe, ZnS, ZnSe, HgS, HgSe, PbS, or PbSe, for example. [0005]
  • The reason semiconductor nanoparticles are attracting attention is that since semiconductor nanoparticles are characterized by emitting strong fluorescence with a narrow full width at half maximum, the creation of various colors of fluorescence is possible. Thus, it is considered that future applicable fields are almost unlimited. However, semiconductor nanoparticles obtained by the above method exhibit a wide grain-size distribution and therefore cannot provide the full advantage of the properties of semiconductor nanoparticles. [0006]
  • Therefore, attempts have been made to attain a monodisperse distribution by using chemical techniques to precisely separate the semiconductor nanoparticles having a wide grain-size distribution immediately after preparation into individual grain sizes and extract only those semiconductor nanoparticles of a particular grain size. The attempts to attain a monodisperse distribution of grain size that have been reported so far include an electrophoresis separation method that utilizes variation in the surface charge of nanoparticles depending on the grain size, an exclusion chromatography that takes advantage of differences in retention time due to different grain sizes, a size-selective precipitation method utilizing differences in dispersibility into an organic solvent due to different grain sizes, and a size-selective optical etching method that takes advantage of the fact that a metal chalcogenide semiconductor is oxidatively dissolved when irradiated by light in the presence of dissolved oxygen. [0007]
  • Semiconductor nanoparticles obtained by these methods exhibit a spectrum having a peak with a relatively narrow full width at half maximum (FWHM). Thus, by controlling the grain size of semiconductor nanoparticles, various reagents exhibiting a spectrum having narrow FWHMs can be prepared. This enables multicolor analyses for the detection and imaging of biopolymers. Further, semiconductor nanoparticles have greater durability compared with commonly used organic dyes, and they are almost free from fading. [0008]
  • Also, in addition to band gap fluorescence exhibited by the inner part of semiconductor nanoparticles, semiconductor nanoparticles emit defect fluorescence that is completely different from fluorescence arising from an energy level existing in the forbidden band of energy levels inside semiconductor nanoparticles. [0009]
  • The energy level that emits the defect fluorescence is presumably derived from the presence of a defect level mainly on the surface site of semiconductor nanoparticles and is considered to inhibit the properties of semiconductor nanoparticles exhibiting a spectrum with a narrow FWHM, and thus this has been a problem to be solved. Further, as described later using FIG. 2, when semiconductor nanoparticles are prepared using a size-selective optical etching method or the like, the phenomena may be observed where defect fluorescence generated from the defect level is more strongly emitted than inherent fluorescence generated from the band gap inside the semiconductor nanoparticles. In the present invention, fluorescence that is exhibited due to the presence of a defect level mainly on the surface site of semiconductor nanoparticles is called “defect fluorescence.”[0010]
  • As a typical solution method to overcome the effect of this defect fluorescence, a method has been attempted which carries out multi-layering on the semiconductor material for the particle by coating the core with a semiconductor material having a broader band gap than the semiconductor material for the core, and inorganic and organic materials, and suppresses the defect fluorescence. Experiments by this method have been carried out with various materials. However, because the preparation of semiconductor nanoparticles by this method requires the safety of reagents and a reaction at relatively higher temperatures, the method can be hardly said to be industrially preferable. When semiconductor nanoparticles are not multi-layered, the phenomena may be observed where florescence generated from the defect level thereof is stronger than inherent fluorescence generated from the band gap inside semiconductor nanoparticles. [0011]
  • Therefore, there has been a need to solve the problem of defect fluorescence inhibiting measurement of the inherent fluorescence of semiconductor nanoparticles. [0012]
  • SUMMARY OF THE INVENTION
  • The present inventors have made intensive studies and succeeded in solving the above problem by, conversely, making positive use of defect fluorescence, which heretofore had been considered as something that obstructs various measurements utilizing the inherent fluorescence emission of semiconductor nanoparticles. Namely, in addition to fluorescence having an energy level existing in the forbidden band of energy levels inside semiconductor nanoparticles, the use of defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of semiconductor nanoparticles has provided the solution to the above problem. [0013]
  • Firstly, a fluorescent reagent of the present invention is characterized by measuring defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of semiconductor nanoparticles. [0014]
  • The fluorescent reagent of the present invention is preferably used, for example, for the detection of biopolymers. [0015]
  • The detection of biopolymers can use DNA chips or beads using hybridization. In particular, DNA chips or beads can be used when the biopolymers are DNAs or proteins. [0016]
  • Further, the fluorescent reagent of the present invention is preferably used for vital observation. In particular, it can be used as a stain for living tissues in cell technologies. [0017]
  • Furthermore, by modifying the surface of the semiconductor nanoparticles, the fluorescent reagent of the present invention can be chemically bound to the biopolymers or living tissues via the modifying groups. Alternatively, by giving an electric charge to the semiconductor nanoparticles by surface modification, the fluorescent reagent can be electrostatically bound to the biopolymers or living tissues. The surface of the semiconductor nanoparticles can be modified with functional groups. [0018]
  • Moreover, defect fluorescence of the semiconductor nanoparticles can be amplified using a size-selective optical etching method. [0019]
  • Secondly, a method of measuring fluorescence of the present invention comprises the step of measuring defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle. [0020]
  • As a specific example of the measurement method, the method is preferably applied to a biopolymer detection method that detects the presence or absence of and the amount of binding to probe biopolymers by electrostatically binding positively or negatively charged semiconductor nanoparticles to a negative or positive charge of sample biopolymers. The biopolymer detection method measures defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle. [0021]
  • Here, the biopolymer detection can utilize DNA chips or beads using hybridization. The biopolymers are preferably DNAs or proteins. [0022]
  • Other specific examples of the measurement method include application to vital observation. For example, the vital observation that utilizes semiconductor nanoparticles as stains for living tissues in cell technologies may be mentioned. Other examples include the use of semiconductor nanoparticles as stains for living tissue such as viscera, muscle, brain, and bone. [0023]
  • Further, the measurement method of the present invention is applicable to the biopolymer detection wherein the surfaces of the semiconductor nanoparticles are modified with functional groups, as previously filed by the present applicant in Japanese Patent Application No. 2002-27616. [0024]
  • When the semiconductor nanoparticles are manufactured by a size-selective optical etching method, the defect fluorescence thereof is amplified. [0025]
  • Furthermore, the defect fluorescence can be remarkably exhibited when excited with excitation light of a wavelength deviated from an excitation wavelength at which fluorescence emission from a band gap of the semiconductor nanoparticles exhibits a peak. [0026]
  • Moreover, in the fluorescence measurement method of the present invention, two or more types of defect fluorescence having different wavelengths can be measured by using two or more types of semiconductor nanoparticles, thus enabling multicolor analysis to obtain two or more types of information. [0027]
  • Further, defect fluorescence having different spectra of a semiconductor nanoparticle can be measured by changing excitation wavelengths, and a difference between the different spectra can be obtained to enable correction of a measurement error. [0028]
  • As described above, the present invention relates to a fluorescent reagent which utilizes defect fluorescence arising from a defect level of a surface site existing inside the forbidden band of a band gap of a semiconductor nanoparticle material, and a method of measuring fluorescence. [0029]
  • There are two types of fluorescence emitted from a semiconductor nanoparticle. One is band gap fluorescence attributable to the properties of a semiconductor nanoparticle material per se, and the other is defect fluorescence mainly attributable to the properties of a surface site of a prepared semiconductor nanoparticle. Band gap fluorescence attributable to the properties of the semiconductor nanoparticle per se can be controlled by controlling the grain size of semiconductor nanoparticles, and the control range is determined depending on the material of the semiconductor nanoparticles. The band gap fluorescence exhibits a spectrum having a peak with a very narrow FWHM. In contrast, the defect fluorescence of semiconductor nanoparticles is not related to the grain size of semiconductor nanoparticles, and is determined depending only on the materials constituting the semiconductor nanoparticle. The spectrum of the defect fluorescence has a wider FWHM compared with that of the band gap fluorescence, but the fluorescence intensity of the defect fluorescence is equal to or stronger than that of band gap fluorescence from mono-layered semiconductor nanoparticles. Therefore, when observing fluorescence of several colors, the defect fluorescence allows semiconductor nanoparticles to fully exhibit their abilities as a reagent. [0030]
  • This fluorescence is strongly exhibited in the case of ZnS when zinc perchlorate and hydrogen sulfide gas are mixed in a nitrogen atmosphere. Further, in the case of CdS, after cadmium perchlorate and hydrogen sulfide gas are mixed in a nitrogen atmosphere and the grain size is monodispersed by an optical etching method, the fluorescence is strongly exhibited. Furthermore, semiconductor nanoparticles prepared by methods other than the above exhibit defect fluorescence in most cases. [0031]
  • In addition to the above semiconductor nanoparticle materials, examples of the materials to be used in the present invention include ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgS, HgSe, HgTe, InP, InAs, GaN, GAP, GaAs, TiO, WO[0032] 3, PbS, and PbSe.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the absorption spectra of semiconductor nanoparticles. [0033]
  • FIG. 2 shows the correlation between single color irradiation time and fluorescent spectrum of CdS nanoparticles. [0034]
  • FIG. 3 shows the fluorescence spectra of semiconductor nanoparticles. [0035]
  • FIG. 4 is a schematic view of positively charged semiconductor nanoparticles. [0036]
  • FIG. 5 shows the excitation spectra of semiconductor nanoparticles. [0037]
  • FIG. 6 shows the comparison of excitation wavelength characteristics between band gap fluorescence and defect fluorescence. [0038]
  • FIG. 7 shows the variations of the fluorescence characteristics by excitation wavelength.[0039]
  • EXAMPLES
  • Herein, CdS nanoparticles and ZnS nanoparticles are referred to for description of the method for preparing semiconductor nanoparticles according to the present invention. [0040]
  • Preparation of CdS Semiconductor Nanoparticles
  • In a semiconductor particle, the proportion of its surface area to its volume is very large, and thus semiconductor nanoparticles tend to coalesce very easily. Therefore, in order to allow the semiconductor nanoparticles to exist stably, measures have to be taken to prevent them from colliding or fusing with each other. A variety of measures have been devised so far, which can be roughly divided into two types. One is the physical isolation of the semiconductor nanoparticles by incorporating them into a solid matrix and a polymer matrix. The other is the inactivation of the particle surface by chemically modifying a metal-ion site on the particle surface with a low-molecule organic matter having a high capacity for forming a complex with the metal-ion site. Based on the latter concept, hexametaphosphate was employed as the stabilizer for the present example. [0041]
  • 1000 ml of an aqueous solution of sodium hexametaphosphate (0.1 mmol) and cadmium perchlorate (0.2 mmol) was prepared and adjusted to pH 10.3. Nitrogen gas was bubbled into the solution, and then hydrogen sulfide gas (0.2 mmol) was injected into the solution while stirring vigorously. Thereafter, stirring was conducted for a while, during which time the solution changed from optically transparent and colorless to optically transparent yellow. [0042]
  • At this point, semiconductor nanoparticles that were stabilized by hexametaphosphate already existed in the solution, but these semiconductor nanoparticles had a wide grain-size distribution, with their standard deviation being 15% or more of the average grain size. In addition, the semiconductor nanoparticles in this state had very weak band gap fluorescence intensity and defect fluorescence intensity. [0043]
  • Hereafter, the size-selective photocorrosion is described. As the physicochemical properties of a semiconductor nanoparticle depend on its grain size due to a quantum-size effect, the physical properties of the semiconductor nanoparticles in this state are averaged and their characteristics cannot be fully exhibited. Thus, there is a need to chemically separate the semiconductor nanoparticles having a wide grain-size distribution immediately after preparation into individual grain sizes in an accurate manner, and extract only those semiconductor particles of a specific grain size in order to attain a monodisperse distribution. One of methods for carrying out the above operation is the size-selective photocorrosion. The size-selective photocorrosion takes advantage of the fact that as the grain size of a semiconductor nanoparticle decreases its energy gap increases due to a quantum-size effect, and the fact that a metal chalcogenide semiconductor is oxidatively dissolved when irradiated by light in the presence of dissolved oxygen. Thus, the method irradiates the semiconductor nanoparticles having a wide grain-size distribution with monochromatic light of a shorter wavelength than the wavelength of the semiconductor nanoparticles's absorption edge. This causes only the semiconductor nanoparticles of larger diameters to be selectively optically excited and dissolved, thus sorting the semiconductor nanoparticles into smaller grain sizes. In this process, semiconductor nanoparticles in the solution become monodispersed and come to have a band gap fluorescence exhibiting a spectrum with a narrow FWHM in accordance with the irradiated monochromatic light and the grain size of the semiconductor nanoparticle. In contrast, defect fluorescence, which seems to be attributable to the energy level mainly on the semiconductor nanoparticle surface, is of relatively stronger intensity then the band gap fluorescence. Normally such defect fluorescence is regarded as a factor inhibiting the properties of a semiconductor nanoparticle, and is thus treated as a problem, but in the present invention this defect fluorescence is utilized. In the present invention, a size-selective optical etching reaction is used for the purpose of amplifying defect fluorescence. [0044]
  • Nitrogen gas was bubbled into a solution of semiconductor nanoparticles stabilized by hexametaphosphate and having a wide grain-size distribution, and then bubbling with oxygen was carried out for 10 minutes. Methyl viologen was added to the solution to a concentration of 50 μmol/l, and the solution was irradiated with a laser beam under stirring. In the present invention, the monochromatic light irradiation was carried out to optically dissolve semiconductor nanoparticles, and the wavelength of the monochromatic light was 450 nm. [0045]
  • When irradiated with a light of a wavelength of 476.5 nm, the resultant semiconductor nanoparticles had an average grain size of 3.2 nm and a standard deviation of 0.19 nm, thus exhibiting a very narrow grain-size distribution where the standard deviation was about 6% of the average grain size. Thus, a solution of semiconductor nanoparticles with an almost close-to-monodisperse distribution was obtained (FIG. 1). Further, the obtained semiconductor nanoparticles exhibited extremely high defect fluorescence (FIGS. 2 and 3). [0046]
  • As shown in FIG. 2, it was found that with the progress of the size-selective photocorrosion process, the defect fluorescence increased its intensity. [0047]
  • Preparation of ZnS Semiconductor Nanoparticles
  • This method employed the same stabilizer, hexametaphosphate, as the method for CdS nanoparticles. 1000 ml of an aqueous solution of sodium hexametaphosphate (0.1 mmol) and cadmium perchlorate hexahydrate (0.2 mmol) was prepared and adjusted to pH 10.3. Nitrogen gas was bubbled into the solution, and hydrogen sulfide gas (0.2 mmol) was injected into the solution while stirring vigorously. Stirring was continued for a while thereafter, during which time the solution was optically transparent and colorless. As shown in FIG. 3, while CdS semiconductor nanoparticles did not have a strong intensity of defect fluorescence at this stage, ZnS semiconductor nanoparticles already had adequate defect fluorescence intensity. As shown in FIG. 3, the use of multiwavelengths was also available by using defect fluorescence of two or more types of semiconductor nanoparticles at the same time. Thus, multicolor analysis could be conducted to obtain two or more types of information at the same time. [0048]
  • Although semiconductor nanoparticles herein were prepared by dissolving and stirring equimolar amounts of precursors of Cd or Zn, and precursors of S, the method for their preparation is not limited thereto. [0049]
  • Further, with respect to materials of semiconductor nanoparticles, the methods concerning CdS and ZnS were exemplified, but there are many materials which have band gaps to the above CdS and ZnS but exhibit fluorescence having the same properties as that of CdS and ZnS. Thus, the materials are not limited thereto. Furthermore, the defect fluorescence can be remarkably exhibited even though the grain-size of semiconductor nanoparticles is not monodispersed. [0050]
  • Next, application examples using defect fluorescence of semiconductor nanoparticles will be described. [0051]
  • Application Example of Positively Charged Semiconductor Nanoparticles
  • Semiconductor nanoparticles obtained by the above methods and the like, have substantial defect fluorescence, and in the case of a single obtained semiconductor nanoparticle, as a matter of course, the filed of application thereof can be further expanded by modifying the semiconductor nanoparticle surface with a functional group to produce a semiconductor nanoparticle having a functional group exposed on its surface. [0052]
  • The mechanism for detection of biopolymers will be described with reference to FIG. 4. In the figure, by binding between a positive charge of a [0053] surface substrate 1 forming a planar shape or bead shape and a negative charge of a phosphate side-chain of a probe DNA 2, the probe DNA 2 was immobilized to the substrate 1. The probe DNA 2 and a sample DNA 3 then hybridized to each other through hydrogen bonding. As a result, a negative charge of a phosphate side-chain of the sample DNA 3 increased. A positively charged semiconductor nanoparticle 4 bound to the negative charge of the sample DNA 3, and based on the amount of bound semiconductor nanoparticles, information concerning the hybridized sample DNA 3 was provided as a signal.
  • In the example of FIG. 4, the [0054] probe DNA 2 and the semiconductor nanoparticle 4 were negatively and positively charged, respectively, but the charges may be the reverse thereof. Proteins and the like have isoelectric points, and thus the charge of the sample DNA 3 varies between positive and negative depending on the fluctuation of pH values. When the sample DNA 3 is positively charged, a negatively charged semiconductor nanoparticle 4 may be used.
  • Hereinafter, an application example wherein a reaction surface is modified with thiocholine ((2-mercaptoethyl)trimethylammonium) is described. [0055]
  • 350 mg of acetyl thiocholine iodide was dissolved into 1.2 cm[0056] 3 of nitrogen-saturated 2 mol.dm−3 HCl aqueous solution, and the mixture was allowed to stand for 12 hours at room temperature. 0.2 cm3 of 28% ammonia water in a nitrogen atmosphere was added to the mixture for neutralization, to thus prepare alkalescent 0.86 mol.dm−3 thiocholine ((2-mercaptoethyl)trimethylammonium) aqueous solution. By modifying the surface of nanoparticles with this solution, thiocholine-modified CdS nanoparticles having a positive charge on the particle surface were prepared. 4.65 ml of the solution was added to a CdS nanoparticle solution after size-selective optical etching, and the resultant solution was left under stirring for 24 hours at room temperature.
  • The semiconductor nanoparticles obtained above were positively charged and easily adsorbed onto negatively charged DNAs or proteins or the like. Here, an example of application to a DNA microarray using this property will be described. The DNA microarray method is a method wherein: a large number of known probe DNAs are chemically immobilized on a substrate; sample DNAs to be assayed are then introduced on top of the probes; and the sequence characteristics of the samples are identified based on the presence or absence of, and the amount of, binding between the probe DNAs and sample DNAs. Until now, the following method has been generally used to determine the existence of DNA binding and the amount of binding. That is, samples are modified with fluorescent substances or radioactive substances, and the existence of binding and the amount thereof is then determined by optically detecting these substances. The present invention does not require pre-treatment for modifying samples, and thus has a feature of requiring no sample pre-treatment by RNA reverse transcription or PCR reaction. [0057]
  • A sample DNA solution was dropped on a DNA microarray, and a cover glass was gently placed on the mixture. Then, the mixture was reacted for 16 hours under a hermetically closed environment using CHBIO (Hitachi Software Engineering Co., Ltd.). After the reaction, a slide glass was taken out therefrom, and the slide glass was soaked in a 2×SSC, 0.1% SDS solution and the cover glass was removed. Then, the slide glass was soaked for 2 hours in a 2×SSC, 0.1% SDS solution having a CdS semiconductor nanoparticle concentration of 1.2×10[0058] 17 mol.dm−3.
  • Thereafter, the slide glass was shaken in a 2×SSC, 0.1% SDS solution for 20 minutes at room temperature and shaken in a 0.2×SSC, 0.1% SDS solution for 20 minutes at room temperature. Further, in order to remove non-specific adsorptive samples, the slide glass was shaken in 0.2×SSC, 0.1% SDS solution for 20 minutes at 55° C., and the same operation was repeated. Then, the slide glass was shaken several times in 0.2×SSC, 0.1% SDS solution at room temperature, and shaken several times at room temperature in solutions of 0.2×SSC and 0.05×SSC, respectively. The above soaking and washing processes were carried out using a staining jar. The slide glass was then centrifuged and dried, and provided for analysis which was performed by filtering only defect fluorescence of semiconductor nanoparticles with an epi-illumination fluorescence microscope. As a result, bright red defect fluorescence was measured from each spot of the DNA microarray. According to the present example, it was found that the measurement of defect fluorescence of semiconductor nanoparticles was useful for reaction measurement in various reactions using semiconductor nanoparticles. [0059]
  • The present method is applicable to biopolymer microarrays in general, and not only to DNA microarrays but also other biopolymer microarrays and sensors such as protein microarrays, which have the same principle. [0060]
  • Multicolor Analysis Using Defect Fluorescence
  • As described above, defect fluorescence of semiconductor nanoparticles is determined only depending on the materials constituting the semiconductor nanoparticles, and irrespective of the grain-size of semiconductor nanoparticles. Therefore, in order to achieve multicolor analysis and observation using defect fluorescence, it is necessary to use semiconductor nanoparticles formed of the same number of materials as the number of colors to be used. Herein, multicolor analysis using CdS and ZnS nanoparticles will be described. [0061]
  • As shown in FIG. 1, CdS and ZnS nanoparticles exhibit different adsorption spectra from each other. In addition, FIG. 5 shows fluorescence intensities at excitation wavelengths. CdS and ZnS nanoparticles also have different excitation spectra from each other. Further, as shown in FIG. 3, they have different fluorescence spectra from each other. [0062]
  • When ZnS nanoparticles and CdS nanoparticles were excited at wavelengths of 250 nm and 350 nm, respectively, they exhibited fluorescence having a strong peak at wavelengths near 425 nm and 525 nm, respectively. Therefore, commonly conducted multicolor analysis and observation can be conducted with defect fluorescence of semiconductor nanoparticles by using these two fluorescent reagents simultaneously. Further, as semiconductor nanoparticles are excited at wavelengths close to 320 nm based on the excitation spectrum, semiconductor nanoparticles can thus be excited with a light source of single wavelength. [0063]
  • Method of Exhibiting Only Defect Fluorescence
  • The excitation spectra of band gap fluorescence and defect fluorescence exhibit different waveforms from each other. As shown in FIG. 6, in the case of CdS semiconductor nanoparticles, the band gap fluorescence exhibited a peak at a wavelength of 450 nm, and the defect fluorescence exhibited a peak at a wavelength of 520 nm. The excitation spectra of band gap fluorescence and defect fluorescence at 450 nm and 520 nm wavelengths, respectively, both had peaks at wavelengths close to 390 nm, but the defect fluorescence spectrum had a broader full width at half maximum than the excitation spectrum of the band gap fluorescence wavelength. Hence, by exciting semiconductor nanoparticles at wavelengths deviated from a peak wavelength of fluorescence generated from the band gap or at wavelengths at which the defect fluorescence exhibits an excitation spectrum peak, it is possible to remarkably exhibit only defect fluorescence. [0064]
  • Analytical Method
  • FIG. 7 shows that the fluorescence spectra of semiconductor nanoparticles were different when the wavelength of excitation light was changed. Using these two different spectra, it is possible to perform error correction by computing the difference. Namely, the respective baselines of the spectra at 390 nm and 350 nm in FIG. 7 can be corrected based on the strength comparison between the respective excitation lights for standardization. [0065]
  • In the above example, the excitation was carried out with light, but the same effect can be obtained when electrically excited. [0066]
  • EFFECTS OF THE INVENTION
  • The present invention uses defect fluorescence inherent to semiconductor nanoparticles, and thus does not require any means such as an optical etching method or multi-layering to inhibit defect fluorescence. This allows manufacturers to employ an industrially suitable method for manufacturing semiconductor nanoparticles, and allows fluorescent reagents to be provided at a low price. Further, since defect fluorescence is fundamentally stronger than fluorescence generated from a band gap of semiconductor nanoparticles, various measurements or observations using semiconductor nanoparticles can be carried out easily and the measurement accuracy can be enhanced. [0067]

Claims (23)

What is claimed is:
1. A fluorescent reagent, wherein defect fluorescence exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle is measured.
2. The fluorescent reagent according to claim 1, wherein the fluorescent reagent is used for biopolymer detection.
3. The fluorescent reagent according to claim 2, wherein the biopolymer detection uses a DNA chip or a bead using hybridization.
4. The reagent for biopolymer detection according to claim 2, wherein the biopolymer is a DNA.
5. The reagent for biopolymer detection according to claim 2, wherein the biopolymer is a protein.
6. The fluorescent reagent according to claim 1, wherein the fluorescent reagent is used for vital observation.
7. The fluorescent reagent according to claim 6, wherein the vital observation uses a semiconductor nanoparticle as a strain for a living tissue in cell technologies.
8. The fluorescent reagent according to claim 2, wherein the semiconductor nanoparticle is electrostatically bound to the biopolymer or living tissue via a modifying group.
9. The fluorescent reagent according to claim 2, wherein the semiconductor nanoparticle is chemically bound to the biopolymer or living tissue via a modifying group.
10. The fluorescent reagent according to claim 1, wherein the surface of the semiconductor nanoparticle is modified with a functional group.
11. The fluorescent reagent according to claim 1, wherein the semiconductor nanoparticle is manufactured by a size-selective optical etching method.
12. A fluorescence measurement method, wherein defect fluorescence which is exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle is measured.
13. The fluorescence measurement method according to claim 12, wherein defect fluorescence which is exhibited due to the presence of a defect level mainly on the surface site of a semiconductor nanoparticle is measured in a biopolymer detection method that detects the presence or absence of and amount of binding of a sample biopolymer to a probe biopolymer by electrostatically binding a positively or negatively charged semiconductor nanoparticle to a negative or positive charge of the sample biopolymer.
14. The fluorescence measurement method according to claim 13, wherein the biopolymer detection uses a DNA chip or bead using hybridization.
15. The fluorescence measurement method according to claim 13, wherein the biopolymer is a DNA.
16. The fluorescence measurement method according to claim 13, wherein the biopolymer is a protein.
17. The fluorescence measurement method according to claim 12, wherein the method is used for vital observation.
18. The fluorescence measurement method according to claim 17, wherein the vital observation uses the semiconductor nanoparticle as a stain for a living tissue in cell technologies.
19. The fluorescence measurement method according to claim 12, wherein the semiconductor nanoparticle surface is modified with a functional group.
20. The fluorescence measurement method according to claim 12, wherein the semiconductor nanoparticle is manufactured by a size-selective optical etching method.
21. The fluorescence measurement method according to claim 12, wherein the defect fluorescence is remarkably exhibited when the defect fluorescence is excited with excitation light of a wavelength deviated from an excitation wavelength at which fluorescence emitted from the band gap of the semiconductor nanoparticle exhibits a peak.
22. The fluorescence measurement method according to claim 12, wherein the method is a multicolor analysis comprising measuring two or more types of defect fluorescence having different wavelengths by using two or more types of semiconductor nanoparticles to obtain two or more types of information.
23. The fluorescence measurement method according to claim 12, wherein the method comprises measuring defect fluorescence having different spectra of the semiconductor nanoparticle by changing a wavelength of excitation light to obtain a difference between the different spectra, and correcting a measurement error based on the difference.
US10/360,866 2002-03-27 2003-02-10 Semiconductor nanoparticle fluorescent reagent and fluorescence determination method Abandoned US20030194731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/389,151 US8003409B2 (en) 2002-03-27 2006-03-27 Semiconductor nanoparticle fluorescent reagent and fluorescence determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP88987/2002 2002-03-27
JP2002088987A JP3701622B2 (en) 2002-03-27 2002-03-27 Semiconductor nanoparticle fluorescent reagent and fluorescence measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/389,151 Division US8003409B2 (en) 2002-03-27 2006-03-27 Semiconductor nanoparticle fluorescent reagent and fluorescence determination method

Publications (1)

Publication Number Publication Date
US20030194731A1 true US20030194731A1 (en) 2003-10-16

Family

ID=28786134

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/360,866 Abandoned US20030194731A1 (en) 2002-03-27 2003-02-10 Semiconductor nanoparticle fluorescent reagent and fluorescence determination method
US11/389,151 Expired - Fee Related US8003409B2 (en) 2002-03-27 2006-03-27 Semiconductor nanoparticle fluorescent reagent and fluorescence determination method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/389,151 Expired - Fee Related US8003409B2 (en) 2002-03-27 2006-03-27 Semiconductor nanoparticle fluorescent reagent and fluorescence determination method

Country Status (2)

Country Link
US (2) US20030194731A1 (en)
JP (1) JP3701622B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145138A1 (en) * 2005-01-06 2006-07-06 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
EP1795573A1 (en) * 2005-12-06 2007-06-13 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
US20070131905A1 (en) * 2005-01-06 2007-06-14 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
US20100137131A1 (en) * 2007-04-16 2010-06-03 National Institute Of Advanced Industrial Science And Technology Photocatalyst structure
CN102803129A (en) * 2009-04-28 2012-11-28 Qd视光有限公司 Optical materials, optical components, and methods
US9496141B2 (en) 2009-11-11 2016-11-15 Qd Vision, Inc. Device including quantum dots
CN113189073A (en) * 2021-05-10 2021-07-30 山西农业大学 Method for detecting content of pirimicarb in food by combining sulfur-doped carbon quantum dots with enzyme inhibition method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200931B2 (en) * 2006-05-26 2013-06-05 コニカミノルタエムジー株式会社 III-V type semiconductor / SiO2 type nanoparticle and biological material labeling agent
TW200811051A (en) * 2006-07-27 2008-03-01 Ube Industries Periodic table group XI or XII metal chalcogenide nanoparticles and production process thereof
US8110407B2 (en) 2006-09-14 2012-02-07 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906670A (en) * 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
US6194213B1 (en) * 1999-12-10 2001-02-27 Bio-Pixels Ltd. Lipophilic, functionalized nanocrystals and their use for fluorescence labeling of membranes
US6306610B1 (en) * 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6319426B1 (en) * 1998-09-18 2001-11-20 Massachusetts Institute Of Technology Water-soluble fluorescent semiconductor nanocrystals
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US20040007169A1 (en) * 2002-01-28 2004-01-15 Mitsubishi Chemical Corporation Semiconductor nanoparticles and thin film containing the same
US20040031519A1 (en) * 2002-08-13 2004-02-19 Agfa-Gevaert Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984491B2 (en) * 1996-07-29 2006-01-10 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6333110B1 (en) * 1998-11-10 2001-12-25 Bio-Pixels Ltd. Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
US20010055764A1 (en) * 1999-05-07 2001-12-27 Empedocles Stephen A. Microarray methods utilizing semiconductor nanocrystals
US6761877B2 (en) 2000-02-18 2004-07-13 Biocrystal, Ltd. Functionalized encapsulated fluorescent nanocrystals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906670A (en) * 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
US6306610B1 (en) * 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6319426B1 (en) * 1998-09-18 2001-11-20 Massachusetts Institute Of Technology Water-soluble fluorescent semiconductor nanocrystals
US6194213B1 (en) * 1999-12-10 2001-02-27 Bio-Pixels Ltd. Lipophilic, functionalized nanocrystals and their use for fluorescence labeling of membranes
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US20040007169A1 (en) * 2002-01-28 2004-01-15 Mitsubishi Chemical Corporation Semiconductor nanoparticles and thin film containing the same
US20040031519A1 (en) * 2002-08-13 2004-02-19 Agfa-Gevaert Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030784B2 (en) 2005-01-06 2011-10-04 Hitachi Solutions, Ltd. Semiconductor nanoparticle surface modification
US20060145138A1 (en) * 2005-01-06 2006-07-06 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
EP1679359A1 (en) * 2005-01-06 2006-07-12 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
US20070131905A1 (en) * 2005-01-06 2007-06-14 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
US7329369B2 (en) 2005-01-06 2008-02-12 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
EP1795573A1 (en) * 2005-12-06 2007-06-13 Hitachi Software Engineering Co., Ltd. Semiconductor nanoparticle surface modification method
US20100137131A1 (en) * 2007-04-16 2010-06-03 National Institute Of Advanced Industrial Science And Technology Photocatalyst structure
CN102803129A (en) * 2009-04-28 2012-11-28 Qd视光有限公司 Optical materials, optical components, and methods
US9466757B2 (en) 2009-04-28 2016-10-11 Qd Vision, Inc. Optical materials, optical components, devices, and methods
US9133388B2 (en) 2009-04-28 2015-09-15 Qd Vision, Inc. Optical materials, optical components, and methods
US9905724B2 (en) 2009-04-28 2018-02-27 Samsung Electronics Co., Ltd. Optical materials, optical components, and methods
US9496141B2 (en) 2009-11-11 2016-11-15 Qd Vision, Inc. Device including quantum dots
US10056523B2 (en) 2009-11-11 2018-08-21 Samsung Research America, Inc. Device including quantum dots
CN113189073A (en) * 2021-05-10 2021-07-30 山西农业大学 Method for detecting content of pirimicarb in food by combining sulfur-doped carbon quantum dots with enzyme inhibition method

Also Published As

Publication number Publication date
US20060174821A1 (en) 2006-08-10
JP2003287498A (en) 2003-10-10
US8003409B2 (en) 2011-08-23
JP3701622B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
US8003409B2 (en) Semiconductor nanoparticle fluorescent reagent and fluorescence determination method
EP2180321B1 (en) Semiconductor nanocrystal probes for biological applications
US20080293584A1 (en) Fluorescent silica nano-particle, fluorescent nano-material, and biochip and assay using the same
US8110407B2 (en) Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
US20060183247A1 (en) Detection method for specific biomolecular interactions using fret between metal nanoparticle and quantum dot
US20070161043A1 (en) Methods of Preparing Multicolor Quantum Dot Tagged Beads and Conjugates Thereof
EP2306195A2 (en) Biological applications of semiconductor nanocrystals
Vaishnavi et al. “Turn-on-off-on” fluorescence switching of quantum dots–cationic porphyrin nanohybrid: a sensor for DNA
JP2003524147A (en) Biological applications of semiconductor nanocrystals
AU2004308238A1 (en) Surface enhanced raman spectroscopy (SERS)-active composite nanoparticles methods of fabrication thereof and methods of use thereof
Alarfaj et al. New immunosensing-fluorescence detection of tumor marker cytokeratin-19 fragment (CYFRA 21-1) via carbon quantum dots/zinc oxide nanocomposite
EP1978366A1 (en) Fluorescent label for biomaterial and method of fluorescent-labeling biomaterial
WO2000028089A1 (en) Functionalized nanocrystals and their use in labeling for strand synthesis or sequence determination
JP3721097B2 (en) Molecular recognition phosphor and target substance measurement method using the same
JP3955225B2 (en) Method for measuring reaction of reaction using semiconductor nanoparticles and method for evaluating quality of semiconductor nanoparticles using the measurement method
Knight et al. Evaluation of the suitability of quantum dots as fluorescence standards.
Debruyne Water-soluble quantum dots: pH sensitivity, bioconjugation, and enzymatic sensing
Dorokhin Surface engineered quantum dots in photoelectrochemistry and supramolecular assembly
Chan et al. and Ultrasensitive Biological Labels

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI SOFTWARE ENGINEERING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, KEIICHI;KUWABATA, SUSUMU;REEL/FRAME:013759/0697

Effective date: 20020204

AS Assignment

Owner name: HITACHI SOFTWARE ENGINEERING CO., LTD., JAPAN

Free format text: CORRECTIVE TO CORRECT THE YEAR OF THE EXECUTION DATES PREVIOUSLY RECORDED AT REEL 013759 FRAME 0697. (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNORS:SATO, KEIICHI;KUWABATA, SUSUMU;REEL/FRAME:014249/0401

Effective date: 20030204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION