US20100190963A1 - Stirred Tank Reactor And Method - Google Patents

Stirred Tank Reactor And Method Download PDF

Info

Publication number
US20100190963A1
US20100190963A1 US12/633,141 US63314109A US2010190963A1 US 20100190963 A1 US20100190963 A1 US 20100190963A1 US 63314109 A US63314109 A US 63314109A US 2010190963 A1 US2010190963 A1 US 2010190963A1
Authority
US
United States
Prior art keywords
biomolecule
membrane
container
interest
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/633,141
Inventor
Wilson Moya
Alison Dupont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMD Millipore Corp
Original Assignee
Millipore Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millipore Corp filed Critical Millipore Corp
Priority to US12/633,141 priority Critical patent/US20100190963A1/en
Assigned to MILLIPORE CORPORATION reassignment MILLIPORE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUPONT, ALISON, MOYA, WILSON
Publication of US20100190963A1 publication Critical patent/US20100190963A1/en
Assigned to EMD MILLIPORE CORPORATION reassignment EMD MILLIPORE CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MILLIPORE CORPORATION
Priority to US13/610,954 priority patent/US9803165B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/28Constructional details, e.g. recesses, hinges disposable or single use
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/12Purification

Definitions

  • the present invention relates to stirred tank containers, and related methods.
  • the general process for the manufacture of biomolecules typically involves two main steps: (1) the expression of the protein in a host cell, followed by (2) the purification of the protein.
  • the first step involves growing the desired host cell in a bioreactor to effect the expression of the protein.
  • cell lines used for this purpose include Chinese hamster ovary (CHO) cells, myeloma (NSO) bacterial cells such as e-coli and insect cells.
  • Suspended particulates such as cells, cell fragments, lipids and other insoluble matter are typically removed from the protein-containing fluid by filtration or centrifugation, resulting in a clarified fluid containing the protein of interest in solution as well as other soluble impurities.
  • the second step involves the purification of the harvested protein to remove impurities which are inherent to the process.
  • impurities include host cell proteins (HCP, proteins other than the desired or targeted protein), nucleic acids, endotoxins, viruses, protein variants and protein aggregates.
  • HCP host cell proteins
  • This purification typically involves several chromatography steps, which can include affinity chromatography, ion exchange, hydrophobic interaction, etc. on solid matrices such as porous agarose, polymeric or glass or by membrane based adsorbers.
  • a chromatography process train for the purification of proteins involves protein-A affinity, followed by cation exchange, followed by anion exchange.
  • the protein-A column captures the protein of interest or target protein by an affinity mechanism while the bulk of the impurities pass through the column to be discarded.
  • the protein then is recovered by elution from the column. Since most of the proteins of interest have isoelectric points (PI) in the basic range (8-9) and therefore being positively charged under normal processing conditions (pH below the PI of the protein), they are bound to the cation exchange resin in the second column. Other positively charged impurities are also bound to this resin.
  • PI isoelectric points
  • the protein of interest is then recovered by elution from this column under conditions (pH, salt concentration) in which the protein elutes while the impurities remain bound to the resin.
  • the anion exchange column is typically operated in a flow through mode, such that any negatively charged impurities are bound to the resin while the positively charged protein of interest is recovered in the flow through stream. This process results in a highly purified and concentrated protein solution.
  • a soluble polyelectrolyte is added to an unclarified cell culture broth to capture the suspended particulates and a portion of the soluble impurities thereby forming a flocculant, which is subsequently removed from the protein solution by filtration or centrifugation.
  • a soluble polyelectrolyte is added to clarified cell culture broth to capture the biomolecules of interest, thereby forming a flocculant, which is allowed to settle and can be subsequently isolated from the rest of the solution.
  • the flocculant is typically washed to remove loosely adhering impurities. Afterwards, an increase in the solution's ionic strength brings about the dissociation of the target protein from the polyelectrolyte, subsequently resulting in the resolubilization of the polyelectrolyte into the protein-containing solution.
  • a polymer soluble under certain conditions, such as temperature, pH, salt, light or combinations thereof, is used to bind impurities while in its soluble state and is then precipitated out upon a change in condition (pH or temperature, etc.) removing the impurities with it.
  • the biomolecule of interest is then further treated using traditional chromatography or membrane adsorbers and the like.
  • In situ product recovery with derivatized magnetic particles is one example of a protein purification technique where the biomolecules of interest can be purified directly from an un-clarified cell culture broth.
  • a polymer shell encapsulating a magnetic bead is functionalized with an affinity ligand that seeks out and binds the target protein.
  • a magnetic field is then applied to collect the bead-protein complexes, leaving behind the soluble impurities and insoluble particulates.
  • a polymer such as a soluble polymer capable of substantially irreversibly binding to insoluble particulates and a subset of soluble impurities and also capable of reversibly binding to one or more desired biomolecules in an unclarified biological material containing stream and the methods of using such a material to purify one or more desired biomolecules from such a stream without the need for prior clarification.
  • this co-pending application discloses a stimuli responsive polymer such as a selectively soluble polymer capable of selectively and reversibly binding to one or more desired biomolecules in an unclarified biological material containing stream and the methods of using such a polymer to purify one or more desired biomolecules from such a complex mixture of materials including the biomolecule(s) of interest and various impurities such as other proteins (host cell proteins), DNA, virus, whole cells, cellular debris and the like without the need for prior clarification of the stream.
  • a stimuli responsive polymer such as a selectively soluble polymer capable of selectively and reversibly binding to one or more desired biomolecules in an unclarified biological material containing stream and the methods of using such a polymer to purify one or more desired biomolecules from such a complex mixture of materials including the biomolecule(s) of interest and various impurities such as other proteins (host cell proteins), DNA, virus, whole cells, cellular debris and the like without the need for prior clarification of the stream.
  • the polymer is soluble under a certain set of process conditions such as one or more of pH, salt concentration, temperature, light, or electrical field, and is able to interact and complex with insoluble impurities (cells, debris, etc.) and a fraction of the soluble impurities, and is rendered insoluble and precipitates out of solution upon a change in conditions (temperature, salt concentration, light, electrical field, or pH), e.g. a stimuli responsive polymer. Only when precipitated out of solution, the polymer is capable of reversibly binding to one or more desired biomolecules within the stream (protein, polypeptide, etc.) in an unclarified cell broth. The precipitate can then be removed from the stream, such as by being filtered out from the remainder of the stream and the desired biomolecule is recovered such as by selective elution from the precipitate.
  • process conditions such as one or more of pH, salt concentration, temperature, light, or electrical field
  • the container or housing for sample preparation or processing, such as biomass culturing or processing, and optionally sample purification.
  • the container or housing is a mixer.
  • the container or housing is a reactor.
  • the reactor is a bioreactor, which can be disposable or reusable, that includes a stirred cell device that can simulate a tangential flow filter to reduce or eliminate clogging that can be caused by the solids generated.
  • the solids comprise a precipitate or floc, such as one that includes a polymer that binds the biomolecule(s) of interest, and impurities such as cells and cell components.
  • the stirred cell component includes one or more membranes for purification, such as during recovery (e.g., by elution) of the biomolecule(s) of interest.
  • the biomolecules are proteins, polypeptides or antibodies.
  • the container has two compartments. In certain embodiments the container has two compartments each of which has a membrane with it. In certain embodiments, the container has two compartments, the first having a membrane, the second being in fluid communication with a filter device downstream of the second compartment outlet.
  • embodiments disclosed herein include purification and isolation of biomolecules of interest derived from cell culture fluids.
  • the methods include carrying out sample preparation or processing in a container or housing, such as culturing a biomass; generating solids such as by precipitating or flocculating a biomolecule of interest from the cultured broth; preventing the solids from settling in the container by agitation; and purification, such as by binding and eluting the biomolecule of interest and filtering the same.
  • the sample processing involves expressing a protein of interest.
  • the solids comprise a precipitate that includes a polymer bound to the protein of interest, and the purification involves binding and elution and one or more filtration steps.
  • the solids comprise a precipitate that includes a polyelectrolyte bound to the protein of interest, and the purification involves binding and elution and one or more filtration steps.
  • the polymer is bound to the impurities (cells, cell debris, etc.) and the biomolecule remains in the supernatant.
  • the precipitation step may replace conventional chromatographic separations, may be used as a direct capture step to isolate the protein of interest from the cell culture broth, or may simply be an intermediate purification step.
  • affinity or ion exchange beads or beads having any ligand or functionality capable of purifying the biomolecule may be used instead of a polymer to bind a biomolecule of interest.
  • the one or more filtration steps are carried out in situ in the same apparatus as the sample processing.
  • the eluted protein is subjected to further purification, such as by affinity and/or ion exchange chromatography.
  • FIG. 1 is a perspective view of a bioreactor in accordance with certain embodiments
  • FIG. 2 is a cross-sectional view of a portion of the bioreactor of FIG. 1 ;
  • FIG. 3 is a perspective view of a bioreactor base in accordance with certain embodiments.
  • FIG. 4 is a perspective view of the base of FIG. 3 , including a membrane sealed thereon;
  • FIG. 5 is a perspective view of a bioreactor assembly, including a housing, a bioreactor base, and a filtration base;
  • FIG. 6 is a perspective view of a filtration base in accordance with certain embodiments.
  • FIG. 7 is a perspective view of an agitator in accordance with certain embodiments.
  • Suitable containers or housings useful here in useful herein are not particularly limited.
  • reactors and in particular, bioreactors, will be discussed in detail, which include disposable as well as reusable bioreactors.
  • solvent-resistance bioreactors having a borosilicate glass cylinder and PTFE components, such as those commercially available from Millipore Corporation, can be used.
  • disposable bioreactors that utilize bags, or that are formed of semi-rigid or rigid molded plastic, can be used. Such disposable bioreactors are generally pre-sterilized.
  • Means for agitation within the bioreactor is also not particularly limited, and includes impeller-based agitation, magnetic stirrers, as well as wave-induced agitation and agitation induced by gas bubbles. Agitation is important in preventing solids from settling and plugging the one or more membranes used for purification.
  • bioreactor 2 is shown held in a stand 4 , which is comprised of several legs 6 (in this embodiment 3 legs although one continuous leg or 2 large legs or more than 3 legs can also be used) and a support rim 8 . As shown the legs 6 may have an optional support piece 10 at or near the bottom to keep the legs 6 from spreading when the bioreactor 2 is filled and in the stand 4 .
  • the stand 4 may also support the drive mechanism 12 (as shown) for the circulation mechanism, which typically is a stirrer or paddle assembly 14 .
  • the drive mechanism 12 is a motor and is mounted to the top of the centered above the top 16 of the bioreactor 2 by several arms 18 (although 3 are shown alternative numbers may be used).
  • Other features such as mounting blocks (not shown) and the like may be formed on the top 16 or support rim 8 to support the drive mechanism 12 .
  • the drive mechanism 12 has a shaft 20 that can be attached to the stirrer as explained later herein.
  • Other stands can be used in lieu of the design described above and will work equally well.
  • the bioreactor body 22 (only partially shown in FIG. 1 ) has an interior space into which the fluids, cells, probes and other devices of the bioreactor are at least partially contained.
  • the body 22 is sealably attached to the top 16 . This may be by a mechanical seal such as a rubber gasket and clips 24 (as shown) or by a clamp, such as a band clamp or Ladish or TriClover clamp, mated threads on the top 16 and body 22 and the like. Alternatively, they may be sealed by adhesives or heat sealing of the top 16 to the body 22 or formed together in one piece such as in a rotomolding apparatus.
  • the body 22 has one or more sidewalls 26 that extend downwardly from the top 16 . As shown, there is one sidewall 26 of a circular or cylindrical design. Alternatively, there can be 3, 4, or more sidewalls if desired (not shown).
  • the body 22 is made of a single piece of molded plastic or glass. Alternatively it may be made of two or more pieces of plastic or glass that are sealed together such as by heat, glue, or gaskets (not shown).
  • Suitable polymers which can be used to form the top and body include but are not limited to polycarbonates, polyesters, nylons, PTFE resins and other fluoropolymers, acrylic and methacrylic resins and copolymers, polysulphones, polyethersulphones, polyarylsulphones, polystyrenes, polyetherimides, nylons, polyesters, polyethylene terephthalates (PET), polyvinyl chlorides, chlorinated polyvinyl chlorides, ABS and its alloys and blends, polyolefins, preferably polyethylenes such as linear low density polyethylene, low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene and copolymers thereof, polypropylene and copolymers thereof and metallocene generated polyolef
  • Preferred polymers are polyolefins, in particular polyethylenes and their copolymers; polystyrenes; and polycarbonates.
  • the top and body may be made of the same polymer or different polymers as desired.
  • the body can be made of glass, acrylic, or other materials not deleterious to the process.
  • the body 22 also can be a disposable plastic bag, as is known in the art.
  • the top 16 and body 22 may have multiple ports of similar and/or of different styles to provide one with the number of ports, of the desired type, in the desired locations throughout the bioreactor 2 .
  • These ports 30 , 32 or at least a portion of them are formed as part of the top 16 and/or body 22 .
  • one or more of the ports can be made in the plastic top 16 and/or body 22 by drilling or burning a hole and then mounting (such as by heat bonding or adhesives) a port in place through or around the hole. Many different port styles and sizes can be accommodated.
  • Ports 30 a may be used for liquid or gas entrance or exit or for probes such as pH probes, thermometers or thermocouples or the like. Ports 30 b may be used for similar purposes. Port 30 c is for the stirrer shaft described in further detail herein. Alternatively, if the bioreactor is an airlift design and doesn't use a stirrer rod, the port 30 c may be used to house the airline to the sparger at or near the bottom of the body or for any other desired purpose. Ports 32 a may be used for sampling of the liquid or for probes such as pH, temperature, dissolved oxygen, lactose level, etc. as are common on such bioreactors.
  • Ports 32 a while shown as being formed on the sidewall 26 may also be formed in the bottom if desired as shown in FIG. 2 .
  • Port 32 b is valved port which can be used to supply gas to the body 22 and/or as a drain or outlet from the body. It may serve both functions by attaching a 3 position valve or Y-shaped tube with valves such as pinch valves on each arm of the Y to control flow (not shown).
  • One suitable system for the valve of port 32 b is a LYNX® connector available from Millipore Corporation of Billerica, Mass. and as shown in US Patent Publication No. 2005/0016620.
  • one or more ports 32 of the body are formed in a location that is below the normal liquid/gas interface level of the bioreactor.
  • one or more of the ports 32 a or b in FIG. 1 may be used to provide gases to the body's interior.
  • a plastic frit such as a POREX® porous material, a microporous membrane or ceramic stone or sintered metal filter may be attached to the inside of the port within the body to provide the sized gas bubbles desired.
  • a port 30 a in the top 16 may be used to hold a tube that extends down into the body to provide the gas supply. Again it may use a frit or ceramic stone or sintered metal filter or a membrane to provide the desired bubble size.
  • gases can be provided to the interior of the body through the porous filter/membrane 110 within the stirred cell assembly and the supply of gas can be provided through port 32 b.
  • FIG. 2 shows a bioreactor 2 with top 16 and body 22 sealed to each other and a suitable stirring mechanism 14 in place.
  • the stirring mechanism shown is formed of a shaft 40 and one or more paddles, circular disk, impellers, vanes or the like 42 .
  • the shaft 40 extends through port 30 c and is connected to the shaft 20 of the drive mechanism 12 (not shown).
  • one or more o-rings in the port 30 c allow for movement of the shaft 40 without compromising the integrity of the seal within the body 22 .
  • the “agitation” to avoid plugging can be effected by ultrasonic waves or vibration directed at the membrane or filter surface to prevent the solids from collecting on the surface.
  • Another method to prevent plugging the filter/membrane is to cause the solids to float to the top of the liquid phase by introducing gas bubbles which adhere to the solids.
  • the bioreactor 22 is a cylindrical tube, and is removably and sealingly affixed to a base in order to provide a stirred cell assembly.
  • shaft 40 is extended below paddle 42 via a short shaft portion 40 ′, and an additional paddle or the like 42 ′ is added ( FIG. 7 ).
  • the paddle 42 ′ is preferably positioned just above the membrane 110 (discussed below) in the base in order to avoid contact with the membrane which could damage it. So positioned, it agitates the fluid just above the membrane and prevents solids (e.g., affinity beads, precipitate or floc) from settling on the membrane, which tend to clog or plug the pores of the membrane.
  • solids e.g., affinity beads, precipitate or floc
  • the paddle is sufficiently wide such that it substantially corresponds to the width of the effective diameter of the membrane, or is slightly smaller than such width, in order to provide uniform fluid agitation over the effective filtration area of the membrane.
  • the paddle 42 ′ can be constructed of a suitable material, such as rubber or a sponge-like material, so that contact with the surface of the membrane during agitation does not damage the membrane, and is acceptable, in order to further ensure that solids do not settle on the membrane surface.
  • suitable means other than a paddle such as a circular disk or wave agitation, to sufficiently agitate the fluid in the interior space of the body 22 , are within the scope of the embodiments disclosed herein.
  • a bioreactor base 100 which includes a supporting surface 101 formed with grooves 102 or the like for the flow of fluid.
  • the configuration of grooves 102 is not particularly limited, although the preferred configuration is concentric circles as illustrated.
  • the grooves 102 are in fluid communication with an aperture 103 , which in turn is in fluid communication with port 32 b, for draining fluid from the base 100 .
  • the surface 101 of the base 100 supports one or more membranes 110 ( FIG. 4 ).
  • one of the one or more membranes is a relatively coarse filter or membrane, particularly when the solids content of the broth is high, such as about 20-35% solids by volume.
  • Use of a coarse filter or membrane as an initial filtration step helps protect and prolong the service life of subsequent downstream filtration through tighter, generally more expensive membranes, such as a 0.2 micron sterilizing grade membrane (discussed in greater detail below).
  • Suitable membranes include, but are not limited to, polymers such as but not limited to olefins such as polyethylene including ultrahigh molecular weight polyethylene, polypropylene, EVA copolymers and alpha olefins, metallocene olefinic polymers, PFA, MFA, PTFE, polycarbonates, vinyl copolymers such as PVC, polyamides such as nylon, polyesters, cellulose, cellulose acetate, regenerated cellulose, cellulose composites, polysulfone, polyethersulfone, polyarylsulfone, polyphenylsulfone, polyacrylonitrile, polyvinylidene fluoride (PVDF), and blends thereof.
  • polymers such as but not limited to olefins such as polyethylene including ultrahigh molecular weight polyethylene, polypropylene, EVA copolymers and alpha olefins, metallocene olefinic polymers, PFA, MFA, PTFE
  • the membrane selected depends upon the application, desired filtration characteristics, particle type and size to be filtered and the flow desired.
  • Preferred membrane based filters include DURAPORE® PVDF membranes available from Millipore Corporation of Billerica Mass., MILLIPORE EXPRESS® and MILLIPORE EXPRESS® PLUS or SH PES membranes available from Millipore Corporation of Billerica Mass.
  • Prefilters, depth filters and the like can also be used in these embodiments such as Polygard® prefilters (Polygard CE prefilters) and depth filters (Polygard CR depth filters) available from Millipore Corporation of Billerica Mass.
  • the filter may be hydrophilic or hydrophobic.
  • Preferred filters are hydrophilic and are low in protein binding.
  • the filter be it membrane or otherwise, may be symmetric in pore size throughout its depth such as DURAPORE® PVDF membranes available from Millipore Corporation of Billerica Mass., or it may be asymmetric in pore size through its thickness as with MILLIPORE EXPRESS® and MILLIPORE EXPRESS® PLUS or SH PES membranes available from Millipore Corporation of Billerica Mass. It may contain a prefilter layer if desired, either as a separate upstream layer or as an integral upstream portion of the membrane itself.
  • the membrane is an ultrafiltration membrane.
  • a membrane with smaller pores in the UF range
  • Suitable ultrafiltration membranes include regenerated cellulose and polyethersulfone membranes, including those with a pore size larger than 0.2 microns, e.g., generally those with pore sizes of 0.45, 0.65, 1.0, 2.0 microns or larger.
  • a porous support (not shown) can be placed between the surface 101 of the base and the membrane(s) 110 .
  • the membrane(s) (and support if present) are sealed against the base such as with an O-ring 106 , which in turn can be held in place by a support ring 107 , such as an acrylic ring.
  • a support ring 107 such as an acrylic ring.
  • each membrane need not be of the same performance characteristics (e.g, pore size, flux, capacity, surface chemistry, etc).
  • the upper membrane against the paddle 42 ′ may be of a larger pore size than the lower membrane(s) and/or it may be of a different material than the lower membrane(s).
  • the bioreactor body 22 such as a cylindrical tube, is placed in sealing relationship with the base 100 , as shown in FIG. 5 .
  • a plurality of legs 6 ′ can be provided, which extend downwardly from the base 100 to support the same.
  • a further filter base can be added to the assembly, as shown in FIGS. 5 and 6 .
  • a base 100 ′ similar to base 100 , is provided, again with a supporting surface having suitable grooves, and one or more membranes sealingly supported thereon, such as with a suitable 0 -ring and support ring.
  • a sterilizing membrane such as a 0.2 micron membrane, can be used (optionally along with a suitable porous support).
  • Sealed to the filter base 100 ′ is a housing 22 ′, which provides a cavity or interior space between the bioreactor base 100 and the filter base 100 ′.
  • the housing 22 ′ can be a cylindrical tube, preferably having the same diameter as the bioreactor housing 22 , and made of the same material. It should have a height sufficient to accommodate at least a portion of the volume of fluid to be purified that is received directly from the bioreactor.
  • the top edge of the housing 22 ′ preferably protrudes radially inwardly, and preferably includes an O-ring 106 ′ so that the housing 22 ′ and base 100 can be affixed in sealing relation.
  • a plurality of legs 6 ′′ can be provided, extending downwardly from the base 100 ′ to support the assembly.
  • the filter base 100 ′ be integral to the bioreactor assembly to form a one-piece reactor assembly for sample processing and direct purification, in certain embodiments this subsequent purification step could be carried out with a filter that is physically separate from (although optionally in fluid communication with) the bioreactor body 22 .
  • the housing 22 ′ includes an inlet port 50 that can be placed in fluid communication with the outlet 32 b of the base 100 , such as with suitable tubing 51 ( FIG. 5 ).
  • the filter base 100 ′ includes an outlet port 32 b ′ in fluid communication with the drain (not shown) in the base, for directing the biomolecule of interest to a suitable point of use, such as a further purification step (e.g, a chromatography process train).
  • An alternative embodiment is to have the outlet of the second housing 22 ′ in fluid communication with the outlet 32 of the base 100 but to have the second housing contain no filter or membrane.
  • the outlet port 32 ′ is in fluid communication via a tube or other conduit (not shown) with a self contained filter device (not shown) such as a Millex® filter or an Optiscale® or Opticap® filter that then sterile filters the biomolecule of interest.
  • a self contained filter device such as a Millex® filter or an Optiscale® or Opticap® filter that then sterile filters the biomolecule of interest.
  • the outlet of this filter device is then connected to a suitable point of use, such as a further purification step (e.g., a chromatography process train).
  • Suitable valving and sensing equipment can be associated with one or more of the various inlets and outlets to detect or measure and control flow or any other characteristic, such as the presence of the biomolecule or the presence of impurities, as appropriate or desired.
  • the outlet 32 b of the base 100 is closed so that the fluid remains in the body 22 when the gas is applied through port 32 a or 30 a.
  • suitable polymers include poly(N-vinyl caprolactam), poly(N-acryloylpiperidine), poly(N-vinylisobutyramide), poly(N-substituted acrylamide) including [poly(N-isopropylacrylamide), poly(N,N′-diethylacrylamide), and poly(N-acryloyl-N-alkylpiperazine)], Hydroxyalkylcellulose, copolymers of acrylic acid and methacrylic acid, polymers and copolymers of 2 or 4-vinylpyridine and chitosan with either a ligand or functional group attached to it.
  • Suitable biomolecules of interest include proteins and antibodies.
  • Suitable antibodies include antibody selected from the group consisting of a recombinant antibody, a recombinant monoclonal antibody, a polyclonal antibody, a humanized antibody and an antibody fragment.
  • the sterile device is placed within the stand and the various connections for air, liquid, probes, sampling, etc. are attached to the device at the appropriate ports.
  • the device is filled with media to a desired level forming a liquid/air interface somewhere below where the top 16 is attached to the body 22 to leave a head space of gas as is common in such devices.
  • At least one port 32 is below the level of the interface.
  • the media is then seeded with the organism to be grown, be it plant, animal cell (CHO or NSO cells for instance) virus, yeast, mold or bacteria (such as E. coli ) and the liquid is circulated or agitated and air/gases and liquids moved into or out of the device in a manner to effectively grow the culture inside.
  • organism to be grown be it plant, animal cell (CHO or NSO cells for instance) virus, yeast, mold or bacteria (such as E. coli ) and the liquid is circulated or agitated and air/gases and liquids moved into or out of the device in a manner to effectively grow the culture inside.
  • a polymer soluble under a certain set of process conditions is added, and is rendered insoluble and precipitates out of solution upon a change in conditions (e.g., temperature, salt concentration, light, electrical field, or pH).
  • conditions e.g., temperature, salt concentration, light, electrical field, or pH.
  • affinity or ion exchange beads or beads having any ligand or functionality capable of purifying the biomolecule can be added to bind to the biomolecule of interest or to the soluble impurities.
  • the solid which in this embodiment includes the precipitate that contains the polymer, impurities such as cells and cell debris, host cell proteins, DNA and the like and the desired biomolecule, can be washed one or more times (such as with a suitable buffer) to ensure that any impurities in the liquid or entrapped in or on the polymer have been removed.
  • the wash step(s) can be carried out by filtration through the one or more membranes in the base 100 , with supernatant being sent to waste via port 32 b.
  • the biomolecule of interest then can be recovered, such as by selective elution of the target biomolecule from the precipitate (or beads) such as by altering the ionic strength and/or pH conditions of the solution while the impurities, including soluble and insoluble material, remain complexed with the precipitated polymer.
  • Recovery is carried out preferably along with a sterilizing filtration step, by causing the filtration base 100 ′ to be in fluid communication with the base 100 , such as by connecting the outlet of the base 100 to the inlet 50 of the body 22 ′. Accordingly, permeate from the outlet of the base 100 enters the body 22 ′, wets the membrane 110 ′, and filtration through the membrane 110 ′ proceeds.
  • the purified biomolecule of interest is then recovered in the elution pool via the outlet port 32 b ′ of base 100 ′.
  • the precipitated polymer-impurity complex (or the affinity beads) may be discarded.
  • the driving force for filtration may be pressure or vacuum.

Abstract

Container for sample preparation or processing, such as biomass culturing or processing, and optionally sample purification. In certain embodiments, the reactor is a bioreactor that includes a stirred cell device that simulates a tangential flow filter to reduce or eliminate clogging that can be caused by the solids generated. In certain embodiments, the solids comprise a precipitate or floc or beads, such as one that includes a polymer that binds the biomolecule(s) of interest, and impurities. In its method aspects, embodiments disclosed herein include purification and isolation of biomolecules of interest derived from cell culture fluids. The methods include carrying out sample preparation or processing in a container, culturing a biomass; generating solids by precipitating or flocculating a biomolecule of interest from the cultured broth; preventing the solids from settling in the container by agitation; and purification, such as by eluting the biomolecule of interest and filtering the same.

Description

  • This application claims priority of Provisional Application Ser. No. 61/201,865 filed Dec. 16, 2008, the disclosure of which is hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to stirred tank containers, and related methods.
  • BACKGROUND OF THE INVENTION
  • The general process for the manufacture of biomolecules, such as proteins, particularly recombinant proteins, typically involves two main steps: (1) the expression of the protein in a host cell, followed by (2) the purification of the protein. The first step involves growing the desired host cell in a bioreactor to effect the expression of the protein. Some examples of cell lines used for this purpose include Chinese hamster ovary (CHO) cells, myeloma (NSO) bacterial cells such as e-coli and insect cells. Once the protein is expressed at the desired levels, the protein is removed from the host cell and harvested. Suspended particulates, such as cells, cell fragments, lipids and other insoluble matter are typically removed from the protein-containing fluid by filtration or centrifugation, resulting in a clarified fluid containing the protein of interest in solution as well as other soluble impurities.
  • The second step involves the purification of the harvested protein to remove impurities which are inherent to the process. Examples of impurities include host cell proteins (HCP, proteins other than the desired or targeted protein), nucleic acids, endotoxins, viruses, protein variants and protein aggregates. This purification typically involves several chromatography steps, which can include affinity chromatography, ion exchange, hydrophobic interaction, etc. on solid matrices such as porous agarose, polymeric or glass or by membrane based adsorbers.
  • One example of a chromatography process train for the purification of proteins involves protein-A affinity, followed by cation exchange, followed by anion exchange. The protein-A column captures the protein of interest or target protein by an affinity mechanism while the bulk of the impurities pass through the column to be discarded. The protein then is recovered by elution from the column. Since most of the proteins of interest have isoelectric points (PI) in the basic range (8-9) and therefore being positively charged under normal processing conditions (pH below the PI of the protein), they are bound to the cation exchange resin in the second column. Other positively charged impurities are also bound to this resin. The protein of interest is then recovered by elution from this column under conditions (pH, salt concentration) in which the protein elutes while the impurities remain bound to the resin. The anion exchange column is typically operated in a flow through mode, such that any negatively charged impurities are bound to the resin while the positively charged protein of interest is recovered in the flow through stream. This process results in a highly purified and concentrated protein solution.
  • Other alternative methods for purifying proteins have been investigated in recent years. One such method involves a flocculation technique. In this technique, a soluble polyelectrolyte is added to an unclarified cell culture broth to capture the suspended particulates and a portion of the soluble impurities thereby forming a flocculant, which is subsequently removed from the protein solution by filtration or centrifugation.
  • Alternatively, a soluble polyelectrolyte is added to clarified cell culture broth to capture the biomolecules of interest, thereby forming a flocculant, which is allowed to settle and can be subsequently isolated from the rest of the solution. The flocculant is typically washed to remove loosely adhering impurities. Afterwards, an increase in the solution's ionic strength brings about the dissociation of the target protein from the polyelectrolyte, subsequently resulting in the resolubilization of the polyelectrolyte into the protein-containing solution.
  • In co-pending application U.S. Ser. No. 12/004,314 filed Dec. 20, 2007, the disclosure of which is hereby incorporated by reference, a polymer, soluble under certain conditions, such as temperature, pH, salt, light or combinations thereof, is used to bind impurities while in its soluble state and is then precipitated out upon a change in condition (pH or temperature, etc.) removing the impurities with it. The biomolecule of interest is then further treated using traditional chromatography or membrane adsorbers and the like.
  • All of the protein purification technologies discussed above share a common theme, namely, to first remove suspended particulates in a first distinct step and then in a second step separate the biomolecules of interest from soluble impurities which are inherent to the process.
  • In situ product recovery with derivatized magnetic particles is one example of a protein purification technique where the biomolecules of interest can be purified directly from an un-clarified cell culture broth. In this technique, a polymer shell encapsulating a magnetic bead is functionalized with an affinity ligand that seeks out and binds the target protein. A magnetic field is then applied to collect the bead-protein complexes, leaving behind the soluble impurities and insoluble particulates.
  • The main drawback of this technique is that it requires appreciable capital investments in design, construction and validation of high-gradient magnetic separators. Also, the technique does not lend itself to disposable applications, which are poised to become the norm for protein purification in the Bioprocess industry.
  • In co-pending application filed Dec. 16, 2008 under Attorney Docket No. MCA-1046, entitled “Purification of Proteins” by Moya, Wilson, et al., the disclosure of which is hereby incorporated by reference, there is disclosed a polymer such as a soluble polymer capable of substantially irreversibly binding to insoluble particulates and a subset of soluble impurities and also capable of reversibly binding to one or more desired biomolecules in an unclarified biological material containing stream and the methods of using such a material to purify one or more desired biomolecules from such a stream without the need for prior clarification. More specifically, this co-pending application discloses a stimuli responsive polymer such as a selectively soluble polymer capable of selectively and reversibly binding to one or more desired biomolecules in an unclarified biological material containing stream and the methods of using such a polymer to purify one or more desired biomolecules from such a complex mixture of materials including the biomolecule(s) of interest and various impurities such as other proteins (host cell proteins), DNA, virus, whole cells, cellular debris and the like without the need for prior clarification of the stream.
  • The polymer is soluble under a certain set of process conditions such as one or more of pH, salt concentration, temperature, light, or electrical field, and is able to interact and complex with insoluble impurities (cells, debris, etc.) and a fraction of the soluble impurities, and is rendered insoluble and precipitates out of solution upon a change in conditions (temperature, salt concentration, light, electrical field, or pH), e.g. a stimuli responsive polymer. Only when precipitated out of solution, the polymer is capable of reversibly binding to one or more desired biomolecules within the stream (protein, polypeptide, etc.) in an unclarified cell broth. The precipitate can then be removed from the stream, such as by being filtered out from the remainder of the stream and the desired biomolecule is recovered such as by selective elution from the precipitate.
  • The removal of the precipitate, however, can be problematic, as it is typically in the form a large mass of sludge.
  • It would be desirable to provide an apparatus and method for the efficient purification of samples, particularly those containing biomolecules, preferably within a single, integral, apparatus that reduces or eliminates one or more process steps that can result in contamination or material loss.
  • SUMMARY OF THE INVENTION
  • The problems of the prior art have been overcome by the embodiments disclosed herein, which include a container or housing for sample preparation or processing, such as biomass culturing or processing, and optionally sample purification. In certain embodiments, the container or housing is a mixer. In certain embodiments, the container or housing is a reactor. In certain embodiments, the reactor is a bioreactor, which can be disposable or reusable, that includes a stirred cell device that can simulate a tangential flow filter to reduce or eliminate clogging that can be caused by the solids generated. In certain embodiments, the solids comprise a precipitate or floc, such as one that includes a polymer that binds the biomolecule(s) of interest, and impurities such as cells and cell components. In certain embodiments, the stirred cell component includes one or more membranes for purification, such as during recovery (e.g., by elution) of the biomolecule(s) of interest. In certain embodiments, the biomolecules are proteins, polypeptides or antibodies. In certain embodiments, the container has two compartments. In certain embodiments the container has two compartments each of which has a membrane with it. In certain embodiments, the container has two compartments, the first having a membrane, the second being in fluid communication with a filter device downstream of the second compartment outlet.
  • In its method aspects, embodiments disclosed herein include purification and isolation of biomolecules of interest derived from cell culture fluids. In certain embodiments, the methods include carrying out sample preparation or processing in a container or housing, such as culturing a biomass; generating solids such as by precipitating or flocculating a biomolecule of interest from the cultured broth; preventing the solids from settling in the container by agitation; and purification, such as by binding and eluting the biomolecule of interest and filtering the same. In certain embodiments, the sample processing involves expressing a protein of interest. In certain embodiments, the solids comprise a precipitate that includes a polymer bound to the protein of interest, and the purification involves binding and elution and one or more filtration steps. In certain embodiments, the solids comprise a precipitate that includes a polyelectrolyte bound to the protein of interest, and the purification involves binding and elution and one or more filtration steps. In certain embodiments, the polymer is bound to the impurities (cells, cell debris, etc.) and the biomolecule remains in the supernatant. The precipitation step may replace conventional chromatographic separations, may be used as a direct capture step to isolate the protein of interest from the cell culture broth, or may simply be an intermediate purification step. In certain embodiments, affinity or ion exchange beads or beads having any ligand or functionality capable of purifying the biomolecule may be used instead of a polymer to bind a biomolecule of interest. In certain embodiments, the one or more filtration steps are carried out in situ in the same apparatus as the sample processing. In certain embodiments, the eluted protein is subjected to further purification, such as by affinity and/or ion exchange chromatography.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a bioreactor in accordance with certain embodiments;
  • FIG. 2 is a cross-sectional view of a portion of the bioreactor of FIG. 1;
  • FIG. 3 is a perspective view of a bioreactor base in accordance with certain embodiments;
  • FIG. 4 is a perspective view of the base of FIG. 3, including a membrane sealed thereon;
  • FIG. 5 is a perspective view of a bioreactor assembly, including a housing, a bioreactor base, and a filtration base;
  • FIG. 6 is a perspective view of a filtration base in accordance with certain embodiments; and
  • FIG. 7 is a perspective view of an agitator in accordance with certain embodiments.
  • DETAILED DESCRIPTION
  • Suitable containers or housings useful here in useful herein are not particularly limited. For purposes of illustration, reactors, and in particular, bioreactors, will be discussed in detail, which include disposable as well as reusable bioreactors. For example, solvent-resistance bioreactors having a borosilicate glass cylinder and PTFE components, such as those commercially available from Millipore Corporation, can be used. Similarly, disposable bioreactors that utilize bags, or that are formed of semi-rigid or rigid molded plastic, can be used. Such disposable bioreactors are generally pre-sterilized. Means for agitation within the bioreactor is also not particularly limited, and includes impeller-based agitation, magnetic stirrers, as well as wave-induced agitation and agitation induced by gas bubbles. Agitation is important in preventing solids from settling and plugging the one or more membranes used for purification.
  • The following description is in reference to a bioreactor. Those skilled in the art will appreciate that it is for illustrative purposes only, and that the embodiments disclosed herein are applicable to any container containing a liquid sample having, or ultimately forming, a sample having a relatively high solids content.
  • Turning now to FIGS. 1 and 2, bioreactor 2 is shown held in a stand 4, which is comprised of several legs 6 (in this embodiment 3 legs although one continuous leg or 2 large legs or more than 3 legs can also be used) and a support rim 8. As shown the legs 6 may have an optional support piece 10 at or near the bottom to keep the legs 6 from spreading when the bioreactor 2 is filled and in the stand 4.
  • Depending upon the type of circulation or agitation system used, the stand 4 may also support the drive mechanism 12 (as shown) for the circulation mechanism, which typically is a stirrer or paddle assembly 14. In this particular embodiment, the drive mechanism 12 is a motor and is mounted to the top of the centered above the top 16 of the bioreactor 2 by several arms 18 (although 3 are shown alternative numbers may be used). Other features such as mounting blocks (not shown) and the like may be formed on the top 16 or support rim 8 to support the drive mechanism 12. As shown, the drive mechanism 12 has a shaft 20 that can be attached to the stirrer as explained later herein. Other stands can be used in lieu of the design described above and will work equally well.
  • The bioreactor body 22 (only partially shown in FIG. 1) has an interior space into which the fluids, cells, probes and other devices of the bioreactor are at least partially contained. The body 22 is sealably attached to the top 16. This may be by a mechanical seal such as a rubber gasket and clips 24 (as shown) or by a clamp, such as a band clamp or Ladish or TriClover clamp, mated threads on the top 16 and body 22 and the like. Alternatively, they may be sealed by adhesives or heat sealing of the top 16 to the body 22 or formed together in one piece such as in a rotomolding apparatus.
  • The body 22 has one or more sidewalls 26 that extend downwardly from the top 16. As shown, there is one sidewall 26 of a circular or cylindrical design. Alternatively, there can be 3, 4, or more sidewalls if desired (not shown).
  • Preferably, the body 22 is made of a single piece of molded plastic or glass. Alternatively it may be made of two or more pieces of plastic or glass that are sealed together such as by heat, glue, or gaskets (not shown). Suitable polymers which can be used to form the top and body include but are not limited to polycarbonates, polyesters, nylons, PTFE resins and other fluoropolymers, acrylic and methacrylic resins and copolymers, polysulphones, polyethersulphones, polyarylsulphones, polystyrenes, polyetherimides, nylons, polyesters, polyethylene terephthalates (PET), polyvinyl chlorides, chlorinated polyvinyl chlorides, ABS and its alloys and blends, polyolefins, preferably polyethylenes such as linear low density polyethylene, low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene and copolymers thereof, polypropylene and copolymers thereof and metallocene generated polyolefins. Preferred polymers are polyolefins, in particular polyethylenes and their copolymers; polystyrenes; and polycarbonates. The top and body may be made of the same polymer or different polymers as desired. In reusable embodiments, the body can be made of glass, acrylic, or other materials not deleterious to the process. The body 22 also can be a disposable plastic bag, as is known in the art.
  • Also formed in the bioreactor 2 of this embodiment are one or more ports 30 (in this embodiment there are three types 30 a-c (for a total of 5 ports) formed in the top 16 and one or more ports 32 in the body 22 (in this embodiment there are at least two different types 32 a-b for a total of seven ports overall). The top 16 and body 22 may have multiple ports of similar and/or of different styles to provide one with the number of ports, of the desired type, in the desired locations throughout the bioreactor 2. These ports 30, 32 or at least a portion of them are formed as part of the top 16 and/or body 22. They may be formed with threads that mate to sealable covers such as closed caps, gasketed caps with a throughbore within the gasket, or various Luer fittings. Alternatively, one or more of the ports can be made in the plastic top 16 and/or body 22 by drilling or burning a hole and then mounting (such as by heat bonding or adhesives) a port in place through or around the hole. Many different port styles and sizes can be accommodated.
  • Ports 30 a may be used for liquid or gas entrance or exit or for probes such as pH probes, thermometers or thermocouples or the like. Ports 30 b may be used for similar purposes. Port 30 c is for the stirrer shaft described in further detail herein. Alternatively, if the bioreactor is an airlift design and doesn't use a stirrer rod, the port 30 c may be used to house the airline to the sparger at or near the bottom of the body or for any other desired purpose. Ports 32 a may be used for sampling of the liquid or for probes such as pH, temperature, dissolved oxygen, lactose level, etc. as are common on such bioreactors. Ports 32 a while shown as being formed on the sidewall 26 may also be formed in the bottom if desired as shown in FIG. 2. Port 32 b is valved port which can be used to supply gas to the body 22 and/or as a drain or outlet from the body. It may serve both functions by attaching a 3 position valve or Y-shaped tube with valves such as pinch valves on each arm of the Y to control flow (not shown). One suitable system for the valve of port 32 b is a LYNX® connector available from Millipore Corporation of Billerica, Mass. and as shown in US Patent Publication No. 2005/0016620.
  • Preferably, one or more ports 32 of the body are formed in a location that is below the normal liquid/gas interface level of the bioreactor.
  • If desired, one or more of the ports 32 a or b in FIG. 1 may be used to provide gases to the body's interior. A plastic frit such as a POREX® porous material, a microporous membrane or ceramic stone or sintered metal filter may be attached to the inside of the port within the body to provide the sized gas bubbles desired. Alternatively, a port 30 a in the top 16 may be used to hold a tube that extends down into the body to provide the gas supply. Again it may use a frit or ceramic stone or sintered metal filter or a membrane to provide the desired bubble size. Alternatively, gases can be provided to the interior of the body through the porous filter/membrane 110 within the stirred cell assembly and the supply of gas can be provided through port 32 b.
  • FIG. 2 shows a bioreactor 2 with top 16 and body 22 sealed to each other and a suitable stirring mechanism 14 in place. The stirring mechanism shown is formed of a shaft 40 and one or more paddles, circular disk, impellers, vanes or the like 42. The shaft 40 extends through port 30 c and is connected to the shaft 20 of the drive mechanism 12 (not shown). Preferably one or more o-rings in the port 30 c allow for movement of the shaft 40 without compromising the integrity of the seal within the body 22. Alternatively, the “agitation” to avoid plugging can be effected by ultrasonic waves or vibration directed at the membrane or filter surface to prevent the solids from collecting on the surface. Another method to prevent plugging the filter/membrane is to cause the solids to float to the top of the liquid phase by introducing gas bubbles which adhere to the solids.
  • In accordance with certain embodiments, the bioreactor 22 is a cylindrical tube, and is removably and sealingly affixed to a base in order to provide a stirred cell assembly. For example, in the embodiment shown, shaft 40 is extended below paddle 42 via a short shaft portion 40′, and an additional paddle or the like 42′ is added (FIG. 7). The paddle 42′ is preferably positioned just above the membrane 110 (discussed below) in the base in order to avoid contact with the membrane which could damage it. So positioned, it agitates the fluid just above the membrane and prevents solids (e.g., affinity beads, precipitate or floc) from settling on the membrane, which tend to clog or plug the pores of the membrane. Preferably the paddle is sufficiently wide such that it substantially corresponds to the width of the effective diameter of the membrane, or is slightly smaller than such width, in order to provide uniform fluid agitation over the effective filtration area of the membrane. In certain embodiments, the paddle 42′ can be constructed of a suitable material, such as rubber or a sponge-like material, so that contact with the surface of the membrane during agitation does not damage the membrane, and is acceptable, in order to further ensure that solids do not settle on the membrane surface. Those skilled in the art will appreciate that suitable means other than a paddle, such as a circular disk or wave agitation, to sufficiently agitate the fluid in the interior space of the body 22, are within the scope of the embodiments disclosed herein.
  • Turning to FIG. 3, a bioreactor base 100 is shown, which includes a supporting surface 101 formed with grooves 102 or the like for the flow of fluid. The configuration of grooves 102 is not particularly limited, although the preferred configuration is concentric circles as illustrated. The grooves 102 are in fluid communication with an aperture 103, which in turn is in fluid communication with port 32 b, for draining fluid from the base 100.
  • The surface 101 of the base 100 supports one or more membranes 110 (FIG. 4). Preferably one of the one or more membranes is a relatively coarse filter or membrane, particularly when the solids content of the broth is high, such as about 20-35% solids by volume. Use of a coarse filter or membrane as an initial filtration step helps protect and prolong the service life of subsequent downstream filtration through tighter, generally more expensive membranes, such as a 0.2 micron sterilizing grade membrane (discussed in greater detail below). Suitable membranes include, but are not limited to, polymers such as but not limited to olefins such as polyethylene including ultrahigh molecular weight polyethylene, polypropylene, EVA copolymers and alpha olefins, metallocene olefinic polymers, PFA, MFA, PTFE, polycarbonates, vinyl copolymers such as PVC, polyamides such as nylon, polyesters, cellulose, cellulose acetate, regenerated cellulose, cellulose composites, polysulfone, polyethersulfone, polyarylsulfone, polyphenylsulfone, polyacrylonitrile, polyvinylidene fluoride (PVDF), and blends thereof. The membrane selected depends upon the application, desired filtration characteristics, particle type and size to be filtered and the flow desired. Preferred membrane based filters include DURAPORE® PVDF membranes available from Millipore Corporation of Billerica Mass., MILLIPORE EXPRESS® and MILLIPORE EXPRESS® PLUS or SH PES membranes available from Millipore Corporation of Billerica Mass. Prefilters, depth filters and the like can also be used in these embodiments such as Polygard® prefilters (Polygard CE prefilters) and depth filters (Polygard CR depth filters) available from Millipore Corporation of Billerica Mass.
  • Depending on the mixture, polymer and the nature of biomolecule, the filter may be hydrophilic or hydrophobic. Preferred filters are hydrophilic and are low in protein binding.
  • The filter, be it membrane or otherwise, may be symmetric in pore size throughout its depth such as DURAPORE® PVDF membranes available from Millipore Corporation of Billerica Mass., or it may be asymmetric in pore size through its thickness as with MILLIPORE EXPRESS® and MILLIPORE EXPRESS® PLUS or SH PES membranes available from Millipore Corporation of Billerica Mass. It may contain a prefilter layer if desired, either as a separate upstream layer or as an integral upstream portion of the membrane itself.
  • Depending on the size of the particles generated, there may be instances in which the membrane is an ultrafiltration membrane. For example, in cases in which the particle size is small compared to the pore size of a microporous membrane, then a membrane with smaller pores (in the UF range) would be more appropriate to avoid plugging. Suitable ultrafiltration membranes include regenerated cellulose and polyethersulfone membranes, including those with a pore size larger than 0.2 microns, e.g., generally those with pore sizes of 0.45, 0.65, 1.0, 2.0 microns or larger. Optionally a porous support (not shown) can be placed between the surface 101 of the base and the membrane(s) 110. The membrane(s) (and support if present) are sealed against the base such as with an O-ring 106, which in turn can be held in place by a support ring 107, such as an acrylic ring. Where more than one membrane 110 is used, they can be assembled in a stacked relationship. Where more than one membrane is used, each membrane need not be of the same performance characteristics (e.g, pore size, flux, capacity, surface chemistry, etc). For example, the upper membrane against the paddle 42′ may be of a larger pore size than the lower membrane(s) and/or it may be of a different material than the lower membrane(s).
  • The bioreactor body 22, such as a cylindrical tube, is placed in sealing relationship with the base 100, as shown in FIG. 5. A plurality of legs 6′ can be provided, which extend downwardly from the base 100 to support the same.
  • In certain embodiments, where additional purification is desired, a further filter base can be added to the assembly, as shown in FIGS. 5 and 6. Thus, a base 100′, similar to base 100, is provided, again with a supporting surface having suitable grooves, and one or more membranes sealingly supported thereon, such as with a suitable 0-ring and support ring. For example, a sterilizing membrane, such as a 0.2 micron membrane, can be used (optionally along with a suitable porous support). Sealed to the filter base 100′ is a housing 22′, which provides a cavity or interior space between the bioreactor base 100 and the filter base 100′. The housing 22′ can be a cylindrical tube, preferably having the same diameter as the bioreactor housing 22, and made of the same material. It should have a height sufficient to accommodate at least a portion of the volume of fluid to be purified that is received directly from the bioreactor. The top edge of the housing 22′ preferably protrudes radially inwardly, and preferably includes an O-ring 106′ so that the housing 22′ and base 100 can be affixed in sealing relation. A plurality of legs 6″ can be provided, extending downwardly from the base 100′ to support the assembly. Although it is preferred that the filter base 100′ be integral to the bioreactor assembly to form a one-piece reactor assembly for sample processing and direct purification, in certain embodiments this subsequent purification step could be carried out with a filter that is physically separate from (although optionally in fluid communication with) the bioreactor body 22.
  • The housing 22′ includes an inlet port 50 that can be placed in fluid communication with the outlet 32 b of the base 100, such as with suitable tubing 51 (FIG. 5). The filter base 100′ includes an outlet port 32 b′ in fluid communication with the drain (not shown) in the base, for directing the biomolecule of interest to a suitable point of use, such as a further purification step (e.g, a chromatography process train).
  • An alternative embodiment is to have the outlet of the second housing 22′ in fluid communication with the outlet 32 of the base 100 but to have the second housing contain no filter or membrane. Instead the outlet port 32′ is in fluid communication via a tube or other conduit (not shown) with a self contained filter device (not shown) such as a Millex® filter or an Optiscale® or Opticap® filter that then sterile filters the biomolecule of interest. The outlet of this filter device is then connected to a suitable point of use, such as a further purification step (e.g., a chromatography process train).
  • Suitable valving and sensing equipment can be associated with one or more of the various inlets and outlets to detect or measure and control flow or any other characteristic, such as the presence of the biomolecule or the presence of impurities, as appropriate or desired. For example, during the cell culture phase, the outlet 32 b of the base 100 is closed so that the fluid remains in the body 22 when the gas is applied through port 32 a or 30 a.
  • In certain embodiments where a polymer is added to a cell culture broth to selectively and releasably bind a biomolecule of interest, suitable polymers include poly(N-vinyl caprolactam), poly(N-acryloylpiperidine), poly(N-vinylisobutyramide), poly(N-substituted acrylamide) including [poly(N-isopropylacrylamide), poly(N,N′-diethylacrylamide), and poly(N-acryloyl-N-alkylpiperazine)], Hydroxyalkylcellulose, copolymers of acrylic acid and methacrylic acid, polymers and copolymers of 2 or 4-vinylpyridine and chitosan with either a ligand or functional group attached to it.
  • Suitable biomolecules of interest include proteins and antibodies. Suitable antibodies include antibody selected from the group consisting of a recombinant antibody, a recombinant monoclonal antibody, a polyclonal antibody, a humanized antibody and an antibody fragment.
  • In operation, the sterile device is placed within the stand and the various connections for air, liquid, probes, sampling, etc. are attached to the device at the appropriate ports. The device is filled with media to a desired level forming a liquid/air interface somewhere below where the top 16 is attached to the body 22 to leave a head space of gas as is common in such devices. At least one port 32 is below the level of the interface.
  • The media is then seeded with the organism to be grown, be it plant, animal cell (CHO or NSO cells for instance) virus, yeast, mold or bacteria (such as E. coli) and the liquid is circulated or agitated and air/gases and liquids moved into or out of the device in a manner to effectively grow the culture inside.
  • A polymer soluble under a certain set of process conditions is added, and is rendered insoluble and precipitates out of solution upon a change in conditions (e.g., temperature, salt concentration, light, electrical field, or pH). Alternatively, affinity or ion exchange beads or beads having any ligand or functionality capable of purifying the biomolecule can be added to bind to the biomolecule of interest or to the soluble impurities. Agitation is continued to inhibit the solids from settling, and the solid, which in this embodiment includes the precipitate that contains the polymer, impurities such as cells and cell debris, host cell proteins, DNA and the like and the desired biomolecule, can be washed one or more times (such as with a suitable buffer) to ensure that any impurities in the liquid or entrapped in or on the polymer have been removed. The wash step(s) can be carried out by filtration through the one or more membranes in the base 100, with supernatant being sent to waste via port 32 b.
  • The biomolecule of interest then can be recovered, such as by selective elution of the target biomolecule from the precipitate (or beads) such as by altering the ionic strength and/or pH conditions of the solution while the impurities, including soluble and insoluble material, remain complexed with the precipitated polymer. Recovery is carried out preferably along with a sterilizing filtration step, by causing the filtration base 100′ to be in fluid communication with the base 100, such as by connecting the outlet of the base 100 to the inlet 50 of the body 22′. Accordingly, permeate from the outlet of the base 100 enters the body 22′, wets the membrane 110′, and filtration through the membrane 110′ proceeds. The purified biomolecule of interest is then recovered in the elution pool via the outlet port 32 b′ of base 100′. The precipitated polymer-impurity complex (or the affinity beads) may be discarded. The driving force for filtration may be pressure or vacuum.

Claims (8)

1. An assembly for culturing or processing a sample, comprising: a first container having an interior space, a first base adapted to be sealingly affixed to said first container and supporting at least one membrane; an outlet in said base, a second container adapted to be in fluid communication with the outlet of said first base, and a second base adapted to be sealingly affixed to said second container.
2. The assembly of claim 1, wherein said second container supports at least one membrane.
3. The assembly of claim 1, wherein said first container is a bioreactor.
4. The assembly of claim 1, further comprising an agitator within the body of said first container to agitate said sample.
5. A method for purifying a biomolecule from a mixture containing impurities comprising: a. providing the mixture at a set of conditions, b. adding one or more polymers, soluble in said mixture under the set of conditions and capable of reversibly and selectively binding to the biomolecule, c. mixing the one or more solubilized polymers throughout the mixture; d. precipitating the one or more polymers and bound biomolecule out of solution by changing the set of conditions in the mixture; e. washing said precipitate by contacting said precipitate with a wash solution and filtering the supernatant through a first membrane, f. recovering the bound biomolecule from the polymer and filtering the biomolecule through a second membrane.
6. The method of claim 4, wherein said filtering of said supernatant and said filtering of said biomolecule are carried out in the same apparatus.
7. The method of claim 5, wherein the biomolecule is an antibody selected from the group consisting of a recombinant antibody, a recombinant monoclonal antibody, a polyclonal antibody, a humanized antibody and an antibody fragment.
8. The method of claim 5, wherein said biomolecule is a protein.
US12/633,141 2008-12-16 2009-12-08 Stirred Tank Reactor And Method Abandoned US20100190963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/633,141 US20100190963A1 (en) 2008-12-16 2009-12-08 Stirred Tank Reactor And Method
US13/610,954 US9803165B2 (en) 2008-12-16 2012-09-12 Stirred tank reactor and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20186508P 2008-12-16 2008-12-16
US12/633,141 US20100190963A1 (en) 2008-12-16 2009-12-08 Stirred Tank Reactor And Method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/610,954 Division US9803165B2 (en) 2008-12-16 2012-09-12 Stirred tank reactor and method

Publications (1)

Publication Number Publication Date
US20100190963A1 true US20100190963A1 (en) 2010-07-29

Family

ID=42288071

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/633,141 Abandoned US20100190963A1 (en) 2008-12-16 2009-12-08 Stirred Tank Reactor And Method
US13/610,954 Active US9803165B2 (en) 2008-12-16 2012-09-12 Stirred tank reactor and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/610,954 Active US9803165B2 (en) 2008-12-16 2012-09-12 Stirred tank reactor and method

Country Status (8)

Country Link
US (2) US20100190963A1 (en)
EP (1) EP2370561B1 (en)
JP (3) JP2012511929A (en)
CN (2) CN105037535A (en)
DK (1) DK2370561T3 (en)
ES (1) ES2749232T3 (en)
SG (1) SG171446A1 (en)
WO (1) WO2010074953A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362217B2 (en) 2006-12-21 2013-01-29 Emd Millipore Corporation Purification of proteins
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
US8691918B2 (en) 2010-05-17 2014-04-08 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
US20150159128A1 (en) * 2012-06-14 2015-06-11 Aglaris Cell S.L. Cell culture method and system
US9090930B2 (en) 2006-06-27 2015-07-28 Emd Millipore Corporation Method and unit for preparing a sample for the microbiological analysis of a liquid
US9803165B2 (en) 2008-12-16 2017-10-31 Emd Millipore Corporation Stirred tank reactor and method
US10793593B2 (en) 2006-12-21 2020-10-06 Emd Millipore Corporation Purification of proteins

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY145258A (en) * 2009-07-06 2012-01-11 Univ Sains Malaysia A system for producing l-homophenylalanine and a process for producing l-homophenylalanine
ES2809211T3 (en) 2011-07-08 2021-03-03 Emd Millipore Corp Enhanced depth filters for disposable biotech processes
DE102012004497A1 (en) 2012-03-06 2013-09-12 Gea Mechanical Equipment Gmbh Process and plant for processing raw manure and / or fermentation residues from biogas production
DE102014101839B4 (en) * 2014-02-13 2018-03-15 Sartorius Stedim Biotech Gmbh Packaging for a flexible container and transport unit
CN106621519B (en) * 2016-12-12 2018-10-23 西南石油大学 A kind of poly- flocculation body device of polymer flooding Guan Liuyong rows
WO2019119157A1 (en) * 2017-12-21 2019-06-27 Genecis Bioindustries Inc. Method for producing polyhydroxyalkanoates (pha) from organic waste
CN114262664A (en) * 2022-03-01 2022-04-01 深圳市路阳农业科技有限公司 Trypsin enzymolysis device

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556302A (en) * 1969-01-06 1971-01-19 Amicon Corp Filtration apparatus having flow distributor
US3702806A (en) * 1970-09-03 1972-11-14 William Emil Oliva Disposable culture media container
US4839046A (en) * 1987-08-20 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Bio-reactor chamber
US5171450A (en) * 1991-03-20 1992-12-15 Nalco Chemical Company Monitoring and dosage control of tagged polymers in cooling water systems
US5237499A (en) * 1991-11-12 1993-08-17 Garback Brent J Computer travel planning system
US5258122A (en) * 1992-04-16 1993-11-02 Amicon, Inc. Cross-flow filter device with pressure-balancing feature
US5512480A (en) * 1994-03-11 1996-04-30 Baxter International Inc. Flow-through bioreactor with grooves for cell retention
US5549332A (en) * 1992-10-09 1996-08-27 Judson; Nancy L. Travel planner
US5622857A (en) * 1995-08-08 1997-04-22 Genespan Corporation High performance cell culture bioreactor and method
US5770358A (en) * 1991-09-18 1998-06-23 Affymax Technologies N.V. Tagged synthetic oligomer libraries
US5802492A (en) * 1994-06-24 1998-09-01 Delorme Publishing Company, Inc. Computer aided routing and positioning system
US5840851A (en) * 1993-07-23 1998-11-24 Plomer; J. Jeffrey Purification of hemoglobin
US5842145A (en) * 1996-07-08 1998-11-24 Zimmer; John S. Apparatus for providing individualized maps to pedestrians
US5846816A (en) * 1995-01-13 1998-12-08 Enviro Research Pty Ltd. Apparatus for biomass production
US5879564A (en) * 1995-11-14 1999-03-09 Cytec Technology Corp. High performance polymer flocculating agents
US5924075A (en) * 1996-01-24 1999-07-13 Toyota Jidosha Kabushiki Kaisha Itinerary preparing system
US5929214A (en) * 1997-02-28 1999-07-27 Cornell Research Foundation, Inc. Thermally responsive polymer monoliths
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US5994560A (en) * 1996-08-29 1999-11-30 Hoechst Celanese Corp. Resolution of racemic mixtures using polymers containing chiral units
US5998588A (en) * 1995-09-01 1999-12-07 University Of Washington Interactive molecular conjugates
US6023241A (en) * 1998-11-13 2000-02-08 Intel Corporation Digital multimedia navigation player/recorder
US6024955A (en) * 1995-11-01 2000-02-15 Toagosei Co. Ltd. Peptides and monoclonal antibodies
US6046690A (en) * 1999-04-06 2000-04-04 Evans, Iii; David Method and system for communicating at a stadium event by altering the wave
US6127526A (en) * 1996-11-27 2000-10-03 Genentech, Inc. Protein purification by Protein A chromatography
US6133047A (en) * 1996-05-24 2000-10-17 Bio Merieux Superparamagnetic monodisperse particles
US6139746A (en) * 1999-02-22 2000-10-31 Kopf; Henry B. Method and apparatus for purification of biological substances
US6147176A (en) * 1988-12-19 2000-11-14 Cytec Technology Corp. High performance polymer flocculating agents nonionic polymers
US6191242B1 (en) * 1988-12-19 2001-02-20 Cytec Technology Corp. Process for making high performance anionic polymeric flocculating agents
US6197522B1 (en) * 1996-01-18 2001-03-06 Rohm And Haas Company Method for identifying and quantifying polymers utilizing immunoassay techniques
US6221655B1 (en) * 1998-08-01 2001-04-24 Cytosignal Spin filter assembly for isolation and analysis
US6245555B1 (en) * 1998-09-01 2001-06-12 The Penn State Research Foundation Method and apparatus for aseptic growth or processing of biomass
US6258275B1 (en) * 1999-10-01 2001-07-10 Ecole Polytechnique Federale De Lausanne Affinity macroligands
US6294622B1 (en) * 1999-09-27 2001-09-25 Ecole Polytechnique Federale De Lausanne (Epfl) Polymer flocculants with improved dewatering characteristics
US6307013B1 (en) * 1998-07-21 2001-10-23 Monsanto Technology Llc Clarification of protein precipitate suspensions using anionic polymeric flocculants
US6358730B1 (en) * 1997-01-29 2002-03-19 Pall Corporation Filtration assembly and culture device
US6372141B1 (en) * 1997-01-24 2002-04-16 Amersham Pharmacia Biotech K.K. Method for separating PTH amino acids
US6420487B1 (en) * 1999-09-08 2002-07-16 Council Of Scientific And Industrial Research Process for the preparation of thermoprecipitating affinity polymers
US20020098567A1 (en) * 2000-11-29 2002-07-25 Council Of Scientific & Industrial Research Thermoprecipitating polymer containing enzyme specific ligands, process for the preparation thereof, and use thereof for the separation of enzymes
US6454950B1 (en) * 1998-12-30 2002-09-24 Amersham Pharmacia Biotech Ab Separation method utilizing liquid-liquid partition
US6521341B1 (en) * 1998-01-06 2003-02-18 Bio Merieux Magnetic particles, method for obtaining same and uses for separating molecules
US6534633B1 (en) * 1998-10-21 2003-03-18 Altor Bioscience Corporation Polyspecific binding molecules and uses thereof
US6538089B1 (en) * 1999-02-05 2003-03-25 Forskarpatent I Syd Ab Gels with a shape memory
US20030059840A1 (en) * 1999-03-19 2003-03-27 Ashutosh Chilkoti Methods of using bioelastomers
US6544424B1 (en) * 1999-12-03 2003-04-08 Refined Technology Company Fluid filtration system
US6565872B2 (en) * 1999-02-16 2003-05-20 Xiao Yu Wu Polymeric system for drug delivery and solute separation
US6622084B2 (en) * 2000-06-02 2003-09-16 Compudigm International Limited Travel route planner system and method
US20030186293A1 (en) * 2000-08-21 2003-10-02 Noriyuki Ohnishi Polymers
US6638918B2 (en) * 2001-11-09 2003-10-28 The Procter & Gamble Company Chitosan compositions
US6641735B1 (en) * 2000-03-23 2003-11-04 Japan Chemical Innovation Institute Separatory material with the use of stimulus-responsive polymer and separation method by using the separatory material
US6673598B1 (en) * 2002-10-29 2004-01-06 Synthecon, Inc. Disposable culture bag
US20040010163A1 (en) * 2001-05-14 2004-01-15 Frank Hilbrig Method for the separation of oligomeric n-substituted (meth)acrylamide compounds and conjugates thereof which are reversibly thermally precipitating
US20040039177A1 (en) * 2000-10-13 2004-02-26 Hidenori Yamanaka Stimulus responsive affinity chromatographic material and separation/purification method
US6706187B1 (en) * 1998-05-22 2004-03-16 Teruo Okano Packing material for chromatography having novel characteristic and method for isolation of substance using the same
US20040058436A1 (en) * 2002-09-20 2004-03-25 East China University Of Science And Technology Cell-detaching reactor for scaled-up inoculation of anchorage-dependent cell culture
US20040062140A1 (en) * 2002-09-27 2004-04-01 Cadogan David Phillip Bioprocess container, bioprocess container mixing device and method of use thereof
US6716593B1 (en) * 1999-01-07 2004-04-06 Quidel Corporation Pyridinium crosslinks assay
US6737235B1 (en) * 1996-03-20 2004-05-18 Bio Merieux Nucleic acid isolation
US20040134846A1 (en) * 2000-04-05 2004-07-15 Yoshikatsu Akiyama Novel material for use in separation and separating method using the same
US6765081B2 (en) * 2001-12-19 2004-07-20 Industrial Technology Research Institute Thermal responsive, water-soluble polymers
US6770758B2 (en) * 2002-12-27 2004-08-03 Industrial Technology Research Institute Polysaccharide separation method
US6821515B1 (en) * 1995-07-27 2004-11-23 Genentech, Inc. Protein formulation
US6830670B1 (en) * 1998-12-30 2004-12-14 Institut Curie Heat-sensitive medium for separating species in a separating channel and use thereof
US20050016620A1 (en) * 2002-04-26 2005-01-27 Stephen Proulx Disposable, sterile fluid transfer device
US6852819B2 (en) * 1997-12-09 2005-02-08 Agency Of Industrial Science & Technology Miti Stimuli-responsive polymer utilizing keto-enol tautomerization and stimuli-responsive separating material and chemical-releasing capsule comprising the same
US20050033616A1 (en) * 2003-08-05 2005-02-10 Ezrez Software, Inc. Travel management system providing customized travel plan
US6863437B2 (en) * 2000-08-23 2005-03-08 National Institute Of Advanced Industrial Science And Technology Temperature-responsive polymer/polymer complex
US20050063259A1 (en) * 2003-09-22 2005-03-24 Fumio Isshiki Optical information recording apparatus
US20050158782A1 (en) * 2000-08-21 2005-07-21 Hirotaka Furukawa Magnetic fine particles having lower critical solution temperature
US20050158851A1 (en) * 2004-01-12 2005-07-21 Bioreactor Systems And Disposable Bioreactor Bioreactor systems and disposable bioreactor
US6926832B2 (en) * 2002-01-04 2005-08-09 Nalco Company Method of using water soluble polymers in a membrane biological reactor
US20050175702A1 (en) * 2002-06-01 2005-08-11 Muller-Schulte Detlef P. Thermosensitive polymer carriers having a modifiable physical structure for biochemical analysis, diagnosis and therapy
US20050224415A1 (en) * 1999-01-29 2005-10-13 Amersham Biosciences Kk Temperature-responsive polymer compound and process for producing the same
US20060270036A1 (en) * 2005-04-22 2006-11-30 Hyclone Laboratories, Inc. Gas spargers and related container systems
US20070078729A1 (en) * 2005-03-14 2007-04-05 Brown Kevin L Itinerary planning tool, system, method, software, and hardware
US7212983B2 (en) * 2001-05-15 2007-05-01 William Gibbens Redmann Method and apparatus for providing visitors with a personalized itinerary and managed access to attractions
US20070198304A1 (en) * 2006-01-16 2007-08-23 Cohen Elliot J System for online travel planning
US20070298451A1 (en) * 2006-06-27 2007-12-27 Sebastien Ribault Method and unit for preparing a sample for the microbiological analysis of a liquid
US20080046298A1 (en) * 2004-07-29 2008-02-21 Ziv Ben-Yehuda System and Method For Travel Planning
US20080201227A1 (en) * 2006-11-07 2008-08-21 Lucia Urban Bakewell Interactive, Internet-based, trip planning, travel resource, travel community, virtual travel, travel-based education, travel-related gaming and virtual/live tour system, methods, and processes, emphasizing a user's ability to tailor complete travel, trip, route, game and touring choices to unique user-specified personal interests, preferences, and special requirements for self and companions
US20080255027A1 (en) * 2006-12-21 2008-10-16 Wilson Moya Purification of proteins
US20090012824A1 (en) * 2007-07-06 2009-01-08 Brockway Gregg Apparatus and method for supplying an aggregated and enhanced itinerary
US7493210B2 (en) * 2001-08-09 2009-02-17 International Business Machines Corporation Vehicle navigation method
US20090058071A1 (en) * 2007-08-30 2009-03-05 Hui Ting Cheng Travel guide booklet with removable cards
US20090130704A1 (en) * 2003-11-13 2009-05-21 Gyure Dale C Novel bioreactor
US20090177513A1 (en) * 2008-01-04 2009-07-09 Colin John Eckhart Device and Method for Dynamic Itinerary Planning and Tracking for Mobile Communications Device
US20090216633A1 (en) * 2008-02-26 2009-08-27 Travelocity.Com Lp System, Method, and Computer Program Product for Assembling and Displaying a Travel Itinerary
US7599847B2 (en) * 2000-06-09 2009-10-06 Airport America Automated internet based interactive travel planning and management system
US20090265651A1 (en) * 2008-04-22 2009-10-22 Hodson Ronald D System and method for managing a travel itinerary
US20090265197A1 (en) * 2008-04-17 2009-10-22 Kidult Inc Limited System and method for building shared itineraries
US20090313679A1 (en) * 2008-06-13 2009-12-17 Yahoo! Inc. Personal travel organizer and online travelogue
US20090313055A1 (en) * 2008-06-13 2009-12-17 Natalie Martin Computer-based system and method for facilitating travel planning for a prospective traveler

Family Cites Families (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2923669A (en) 1954-11-22 1960-02-02 Millipore Filter Corp Method of bacterial analysis
US3211645A (en) 1962-07-17 1965-10-12 Technicon Instr Method and apparatus for filtering sanguineous liquid streams
US3565973A (en) 1967-11-14 1971-02-23 Amicon Corp Purifying cross-linked polyelectrolytes
US3632507A (en) 1970-06-30 1972-01-04 Standard Brands Chem Ind Inc Flocculation of particles dispersed in aqueous media and flocculants used therein
US3737377A (en) 1971-01-27 1973-06-05 Miles Lab Purification of lactase
GB1354349A (en) 1971-10-12 1974-06-05 Allied Colloids Mfg Flocculating agents
US3968037A (en) 1972-09-01 1976-07-06 Calgon Corporation Emulsion polymerization of cationic monomers
US4045377A (en) 1975-10-20 1977-08-30 Hercules Incorporated Cationic polymer prepared from dicyandiamide, a polyamide, a dialkylamine, and an epoxide
US4055469A (en) 1976-12-10 1977-10-25 Eastman Kodak Company Purification of microbial enzyme extracts using synthetic polyelectrolytes
US4215198A (en) 1978-09-15 1980-07-29 Gordon Maurice R Sterility testing unit
US4359537A (en) 1978-09-19 1982-11-16 Rohm And Haas Company Emulsion copolymer anion exchange resins
US4380590A (en) 1978-09-19 1983-04-19 Rohm And Haas Company Emulsion copolymer cation exchange resins
US4200695A (en) 1978-09-19 1980-04-29 Rohm And Haas Company Flocs for filtration and deionization prepared from cationic and anionic emulsion ion exchange resins
US4515893A (en) 1979-04-26 1985-05-07 Ortho Pharmaceutical Corporation Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells
US4305829A (en) 1979-06-29 1981-12-15 Union Carbide Corporation Process for flocculating an aqueous suspension of particles with quaternary ammonium graft copolymers
DE2934854A1 (en) 1979-08-29 1981-09-10 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING NITROGEN-CONDENSING PRODUCTS AND THE USE THEREOF
US4317726A (en) 1981-02-12 1982-03-02 The United States Of America As Represented By The Secretary Of The Army Microbial filter assembly
DE3145320A1 (en) 1981-11-14 1983-05-26 Biotest-Serum-Institut Gmbh, 6000 Frankfurt MICROFILTRATION DEVICE FOR FILTRATION OF COAGELS AND MICROAGGREGATES OF BLOOD
CA1180827A (en) 1982-03-23 1985-01-08 Michael Heskins Polymeric flocculants
US4382028A (en) 1982-07-19 1983-05-03 Monsanto Company Separation of plasma proteins from cell culture systems
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4528933A (en) 1983-05-11 1985-07-16 Robert Allen Container with indicating closure
US4828701A (en) 1983-08-25 1989-05-09 Regents Of The University Of Minnesota Temperature-sensitive method of size-selective extraction from solution
US4533496A (en) * 1984-05-08 1985-08-06 Monsanto Company Method of isolating monoclonal antibodies from hybridoma cultures
US5672347A (en) 1984-07-05 1997-09-30 Genentech, Inc. Tumor necrosis factor antagonists and their use
US4780409A (en) 1985-05-02 1988-10-25 Genetic Systems Corporation Thermally induced phase separation immunoassay
US4904385A (en) 1985-05-23 1990-02-27 The Dow Chemical Company Porous filter media and membrane support means
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4863613A (en) 1985-10-25 1989-09-05 Regents Of The University Of Minnesota Soy protein isolation process using swellable poly(N-isopropylacrylamide) gels
US5091178A (en) 1986-02-21 1992-02-25 Oncogen Tumor therapy with biologically active anti-tumor antibodies
US4925785A (en) 1986-03-07 1990-05-15 Biotechnica Diagnostics, Inc. Nucleic acid hybridization assays
US4912032A (en) 1986-04-17 1990-03-27 Genetec Systems Corporation Methods for selectively reacting ligands immobilized within a temperature-sensitive polymer gel
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
DE3879209D1 (en) 1987-08-27 1993-04-15 Polyfiltronics Ltd FILTER UNITS FOR THE PREPARATION OF BIOLOGICAL SAMPLES.
US5091313A (en) 1988-08-05 1992-02-25 Tanox Biosystems, Inc. Antigenic epitopes of IgE present on B cell but not basophil surface
US5720937A (en) 1988-01-12 1998-02-24 Genentech, Inc. In vivo tumor detection assay
US5429952A (en) 1988-02-02 1995-07-04 Biocode, Inc. Marking of products to establish identity and source
DE68919361T2 (en) 1988-06-21 1995-05-24 Genentech Inc THERAPEUTIC COMPOSITIONS FOR THE TREATMENT OF MYOCARD INFARTS.
US5340865A (en) 1988-12-19 1994-08-23 Cytec Technology Corp. Cross-linked cationic polyermic microparticles
US5354481A (en) 1988-12-19 1994-10-11 Cytec Technology Corp. Water-soluble highly branched polymeric microparticles
US5152903A (en) 1988-12-19 1992-10-06 American Cyanamid Company Cross-linked cationic polymeric microparticles
US4968435A (en) 1988-12-19 1990-11-06 American Cyanamid Company Cross-linked cationic polymeric microparticles
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5139031A (en) 1989-09-18 1992-08-18 La Mina Ltd. Method and device for cytology and microbiological testing
US5003047A (en) 1989-01-10 1991-03-26 Massachusetts Institute Of Technology Method for purifying biologically active ligate
ATE144793T1 (en) 1989-06-29 1996-11-15 Medarex Inc BISPECIFIC REAGENTS FOR AIDS THERAPY
US5047511A (en) 1989-08-28 1991-09-10 Pitman-Moore, Inc. Method for recovering recombinant proteins
JPH03296657A (en) 1990-04-13 1991-12-27 W R Grace & Co Supporter for electrophoresis and electrophoretic method using said supporter
JPH046463A (en) 1990-04-16 1992-01-10 W R Grace & Co Carrier for liquid chromatography and liquid chromatographic method using said carrier
DE69132709T2 (en) 1990-06-29 2002-06-20 Large Scale Biology Corp MELANINE PRODUCTION BY TRANSFORMED MICROORGANISMS
US5116754A (en) 1990-10-04 1992-05-26 Fraser Ann D E Separation of bacteria from organic matter
DE4103969A1 (en) 1991-02-09 1992-08-13 Basf Ag METHOD FOR PRODUCING FINE-PARTICLE, WATER-SOLUBLE OR WATER-SWELLABLE POLYMERISATS
US5238545A (en) 1991-02-27 1993-08-24 W. R. Grace & Co.-Conn. Electrophoretic gel for separation and recovery of substances and its use
WO1992020373A1 (en) 1991-05-14 1992-11-26 Repligen Corporation Heteroconjugate antibodies for treatment of hiv infection
FR2677664A1 (en) * 1991-06-13 1992-12-18 Millipore Sa Device and process for the microbiological control of liquids under pressure
WO1993004173A1 (en) 1991-08-14 1993-03-04 Genentech, Inc. Immunoglobulin variants for specific fc epsilon receptors
JPH07121216B2 (en) * 1991-10-07 1995-12-25 工業技術院長 Stirred bioreactor and incubator
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
US5525519A (en) 1992-01-07 1996-06-11 Middlesex Sciences, Inc. Method for isolating biomolecules from a biological sample with linear polymers
EP1997894B1 (en) 1992-02-06 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Biosynthetic binding protein for cancer marker
FR2687476B1 (en) * 1992-02-13 1994-05-20 Millipore Sa DEVICE FOR VERIFYING THE STERILITY OF A FLUID.
DK0580078T3 (en) 1992-07-22 1998-05-25 Hoechst Ag Polyvinylamine derivatives with hydrophilic centers, process for their preparation as well as the use of the compounds as drugs, carriers of active substances and food aid.
ZA936128B (en) 1992-08-21 1995-02-20 Genentech Inc Method for treating a LFA-1 mediated disorder
JP3253730B2 (en) 1992-08-21 2002-02-04 科学技術振興事業団 Temperature-responsive physiologically active substance-oligomer complex and method for producing the same
US5736137A (en) 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5324787A (en) 1992-11-18 1994-06-28 Air Products And Chemicals, Inc. Modification of poly (vinylamine)
SE9300090D0 (en) 1993-01-14 1993-01-14 Bo Gustav Mattiasson AFFINITY CLEANING WITH COMPLEX BOND LIGAND
US5374971A (en) 1993-03-12 1994-12-20 Picturetel Corporation Two-view video camera stand and support method
US5342581A (en) 1993-04-19 1994-08-30 Sanadi Ashok R Apparatus for preventing cross-contamination of multi-well test plates
DK83093D0 (en) 1993-07-09 1993-07-09 Novo Nordisk As COURSE OF ACTION
US5354801A (en) 1993-08-12 1994-10-11 Cytec Technology Corp. Process for producing small polymer phase droplet microemulsions by multistep aqueous phase addition
ATE157455T1 (en) 1993-12-10 1997-09-15 Genentech Inc METHODS FOR DIAGNOSING ALLERGY AND TESTING ANTI-ALLERGIC THERAPEUTICS
WO1995019181A1 (en) 1994-01-18 1995-07-20 Genentech, Inc. A METHOD OF TREATMENT OF PARASITIC INFECTION USING IgE ANTAGONISTS
DE4406624A1 (en) 1994-03-01 1995-09-07 Roehm Gmbh Crosslinked water-soluble polymer dispersions
WO1995023865A1 (en) 1994-03-03 1995-09-08 Genentech, Inc. Anti-il-8 monoclonal antibodies for treatment of inflammatory disorders
TW474813B (en) 1994-06-10 2002-02-01 Geltex Pharma Inc Alkylated composition for removing bile salts from a patient
WO1996002577A1 (en) 1994-07-18 1996-02-01 Gel Sciences, Inc. Responsive polymer gel beads
CA2157219C (en) 1994-08-31 2010-10-05 Munehiro Noda Process for purifying recombinant human serum albumin
GB9422504D0 (en) 1994-11-08 1995-01-04 Robertson Patricia M B Blood testing
GB9503109D0 (en) 1995-02-17 1995-04-05 Hampshire Advisory Tech Serv Diagnostic test tube and kits
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
IL117645A (en) 1995-03-30 2005-08-31 Genentech Inc Vascular endothelial cell growth factor antagonists for use as medicaments in the treatment of age-related macular degeneration
US5573675A (en) 1995-05-11 1996-11-12 Nalco Chemical Company Clarification of deinking process waters using polymers containing vinylamine
GB9510634D0 (en) 1995-05-25 1995-07-19 Sev Trent Water Ltd Filtration and culture methods and apparatus
US5733507A (en) 1995-06-07 1998-03-31 Inphocyte, Inc. Biological cell sample holder for use in infrared and/or Raman spectroscopy analysis holder
JPH11507535A (en) 1995-06-07 1999-07-06 イムクローン システムズ インコーポレイテッド Antibodies and antibody fragments that suppress tumor growth
JPH0912598A (en) 1995-06-29 1997-01-14 Sekisui Chem Co Ltd Separation and purification of hemoglobin
GB2305936B (en) 1995-10-06 1997-09-03 Jonathan William Lewis Sterile, disposable culture vessels for the rapid growth of bacteria
US5807489A (en) 1995-11-14 1998-09-15 Cytec Technology Corp. High performance polymer flocculating agents
DE69714966T2 (en) 1996-01-23 2003-04-24 Genentech Inc ANTIBODIES AGAINST CD 18 FOR USE AGAINST BRAIN SHOCK
AU1989197A (en) * 1996-03-06 1997-09-22 Akzo Nobel N.V. Automated nucleic acid extraction from samples
US7147851B1 (en) 1996-08-15 2006-12-12 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with α4β7 integrin
DE69729209T2 (en) 1996-11-27 2005-05-19 Genentech, Inc., South San Francisco HUMANIZED ANTI-KOERPER AGAINST CD11A
US5942444A (en) 1997-01-27 1999-08-24 Biocode, Inc. Marking of products to establish identity, source and fate
WO1998045331A2 (en) 1997-04-07 1998-10-15 Genentech, Inc. Anti-vegf antibodies
PT1860187E (en) 1997-05-15 2011-10-04 Genentech Inc Apo-2 receptor
WO1998056808A1 (en) 1997-06-13 1998-12-17 Genentech, Inc. Protein recovery by chromatography followed by filtration upon a charged layer
US5994511A (en) 1997-07-02 1999-11-30 Genentech, Inc. Anti-IgE antibodies and methods of improving polypeptides
US6007803A (en) 1997-09-19 1999-12-28 Geltex Pharmaceuticals, Inc. Ionic polymers as toxin binding agents
NZ504768A (en) 1997-11-28 2002-11-26 Provalis Diagnostics Ltd Device and apparatus for conducting an assay
US6914137B2 (en) 1997-12-06 2005-07-05 Dna Research Innovations Limited Isolation of nucleic acids
JP4217804B2 (en) 1998-09-14 2009-02-04 独立行政法人産業技術総合研究所 Thermally responsive separation material and drug release capsule using thermoresponsive polymer derivative having upper limit solution critical temperature
US6756217B1 (en) 1998-05-29 2004-06-29 Southern Illinois University Glass composite materials containing alkoxosilane derivative having alterable charge, hydrophobic and hydrophilic groups
SE9802882D0 (en) 1998-08-28 1998-08-28 Amersham Pharm Biotech Ab Composite material and its use
AU3244100A (en) * 1999-02-25 2000-09-14 Pall Corporation Chromatography devices, porous medium modules used in chromatography devices, and methods for making porous medium modules
JP2003524680A (en) 1999-05-11 2003-08-19 財団法人化学技術戦略推進機構 Affinity control type material using stimulus-responsive polymer and separation / purification method using the material
US6946129B1 (en) 1999-06-08 2005-09-20 Seattle Genetics, Inc. Recombinant anti-CD40 antibody and uses thereof
US6211140B1 (en) 1999-07-26 2001-04-03 The Procter & Gamble Company Cationic charge boosting systems
DE60022762T2 (en) 1999-07-29 2006-07-13 National Institute Of Advanced Industrial Science And Technology POLYMERIZABLE BIOTIN DERIVATIVES, BIOPTIN POLYMER AND POLYMER REACTIVE ON STIMULATION BY AVIDIN
GB9919187D0 (en) 1999-08-14 1999-10-20 Ciba Spec Chem Water Treat Ltd Flocculation of cell material
DK1226177T3 (en) 1999-10-29 2008-10-06 Genentech Inc Antibody Compositions for Anti-Prostate Stem Cell Antigen (PSCA) and Applications thereof
FR2804117B1 (en) 2000-01-21 2004-08-20 Bio Merieux PROCESS FOR ISOLATING PROTEINS AND / OR NUCLEIC ACIDS, PARTICLE COMPLEXES AND PROTEINS AND / OR NUCLEIC ACIDS, REAGENT AND APPLICATIONS
US6372145B1 (en) 2000-06-05 2002-04-16 Power Engineering Company Fat and protein removal from process streams
JP4887530B2 (en) 2000-08-21 2012-02-29 独立行政法人産業技術総合研究所 Magnetic fine particles and method for producing the same
US6374684B1 (en) 2000-08-25 2002-04-23 Cepheid Fluid control and processing system
ES2320736T3 (en) 2000-09-06 2009-05-28 University Of Massachusetts EXTRACTION OF HIGH EFFICIENCY OF PROTEINS.
US6367749B2 (en) 2001-03-21 2002-04-09 Southern Imperial, Inc. Stand base
JP2003153684A (en) * 2001-11-20 2003-05-27 Advance Co Ltd Three-dimensional cell culture system
GB0108548D0 (en) 2001-04-05 2001-05-23 Ciba Spec Chem Water Treat Ltd Process for flocculating suspensions
US6688487B2 (en) 2001-04-13 2004-02-10 The Coca-Cola Company Locking cup and lid with negative draft sealing surfaces
CA2443390C (en) 2001-04-16 2009-12-15 Halliburton Energy Services, Inc. Methods of treating subterranean zones penetrated by well bores
JP4118927B2 (en) * 2001-07-30 2008-07-16 松下エコシステムズ株式会社 Specimens for normality confirmation test of microorganism weighing device
JP3907508B2 (en) * 2001-07-30 2007-04-18 松下エコシステムズ株式会社 Microorganism collection chip, microorganism collection kit, microorganism measurement method, and microorganism measurement apparatus
FR2829500B1 (en) 2001-09-13 2003-12-12 Hemosystem PROCESS FOR THE CONCENTRATION AND DETECTION OF PATHOGENIC SPROUTS FROM BLOOD PRODUCTS AND / OR DERIVATIVES THEREOF AND DEVICE FOR CARRYING OUT SAID METHOD
CA2473376A1 (en) 2002-01-16 2003-07-31 Dynal Biotech Asa Method for isolating nucleic acids and protein from a single sample
US6998456B1 (en) 2002-02-15 2006-02-14 Iowa State University Research Foundation pH-sensitive methacrylic copolymers and the production thereof
WO2003074571A2 (en) 2002-02-28 2003-09-12 Keck Graduate Institute Cationic polyelectrolytes in biomolecule purification and analysis
WO2003078947A2 (en) 2002-03-15 2003-09-25 The Penn State Research Foundation Method for control of temperature-sensitivity of polymers in solution
US20040009473A1 (en) 2002-06-07 2004-01-15 Christopher Pease Kit and process for microbiological for on-site examination of a liquid sample
AU2003211701B2 (en) 2002-06-21 2007-09-06 Hymo Corporation Water-soluble polymer dispersion, process for producing the same and method of use therefor
AU2003259289A1 (en) 2002-07-30 2004-02-16 University Of Washington Apparatus and methods for binding molecules and cells
US7422724B1 (en) 2002-08-07 2008-09-09 Sandia Corporation Biological preconcentrator
SE0202552D0 (en) 2002-08-27 2002-08-27 Amersham Biosciences Ab Recovery of plasmids in an aqueous two-phase system
BRPI0316779B8 (en) 2002-12-16 2023-02-28 Genentech Inc HUMAN ANTI-CD20 ANTIBODY OR ANTIGEN-BINDING FRAGMENT THEREOF, ITS USES, COMPOSITION, MANUFACTURED ARTICLE AND LIQUID FORMULATION
AU2003299873A1 (en) * 2002-12-23 2004-07-22 Univ Rice William M Methods of detecting the inhibition of fibrocyte formation and methods and compositions for enhancing fibrocyte formation
US7083948B1 (en) 2002-12-24 2006-08-01 Immunex Corporation Polypeptide purification reagents and methods for their use
ATE364092T1 (en) 2003-01-09 2007-06-15 Genentech Inc PURIFICATION OF POLYPEPTIDES
CA2515213A1 (en) 2003-02-11 2004-08-26 University Of Washington Stimuli-responsive polymer conjugates and related methods
JP5362943B2 (en) 2003-03-04 2013-12-11 株式会社セルシード Drug metabolic capacity evaluation system and method of using the same
SE0300791D0 (en) 2003-03-20 2003-03-20 Amersham Biosciences Ab Use of ph-responsive polymers
WO2004089997A1 (en) 2003-04-01 2004-10-21 Nitto Boseki Co., Ltd. Modified polyallylamine and process for producing the same
US6949625B2 (en) 2003-05-12 2005-09-27 Khorionyx Injectable implant of insoluble globin
WO2006085321A2 (en) 2005-02-10 2006-08-17 Affisink Biotechnology Ltd. Compositions and methods for purifying and crystallizing molecules of interest
IL157086A0 (en) 2003-07-24 2004-02-08 Guy Patchornik Multivalent ligand complexes
CA2560901C (en) 2003-08-29 2012-08-21 The University Of Newcastle Research Associates Limited Stimulant sensitive flocculation and consolidation
US7377686B2 (en) 2003-09-04 2008-05-27 Millipore Corporation Disposable mixing system
DE10350248A1 (en) 2003-10-28 2005-06-16 Magnamedics Gmbh Thermosensitive, biocompatible polymer carriers with variable physical structure for therapy, diagnostics and analytics
US20050282169A1 (en) 2004-01-29 2005-12-22 Turner Allen C Signatory sequences
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
WO2005090272A1 (en) 2004-03-12 2005-09-29 University Of Utah Cyclone reactor and associated methods
SE0400916D0 (en) 2004-04-05 2004-04-05 Amersham Biosciences Ab Polymeric ligands
BRPI0510291A (en) 2004-04-27 2007-10-30 Baxter Int stirred tank reactor system
AU2005250500B2 (en) 2004-06-04 2011-06-23 Global Life Sciences Solutions Usa Llc Disposable bioreactor systems and methods
EP1807694A1 (en) 2004-11-04 2007-07-18 Bio-Rad Pasteur Stackable chromatography module and chromatography column comprising a stack of such modules
US8288169B2 (en) 2005-01-21 2012-10-16 Argylla Technologies Surface mediated self-assembly of nanoparticles
EP1856262B1 (en) 2005-01-31 2012-08-15 Merck Sharp & Dohme Corp. Upstream and a downstream purification process for large scale production of plasmid dna
JP2006312117A (en) 2005-05-06 2006-11-16 Canon Inc Separation material for physiologically active substance and its production method
WO2006135673A2 (en) 2005-06-10 2006-12-21 Nanologix, Inc. Production of hydrogen gas and isolation of hydrogen producing microorganisms using replenishing coated substrates
WO2006138143A1 (en) 2005-06-15 2006-12-28 Amprotein Corporation Suspension culture vessels
JP4764264B2 (en) 2005-06-23 2011-08-31 本田技研工業株式会社 General engine electrical wiring structure
WO2007002690A2 (en) 2005-06-24 2007-01-04 William Marsh Rice University Nano-encapsulated triggered-release viscosity breakers
CN101296742A (en) 2005-08-26 2008-10-29 最佳空气控股公司 Method and device for separating a substance from a process gas
NL1030538C1 (en) 2005-11-28 2007-05-30 Eurocore Trading & Consultancy Device for indirectly cooling an air stream through evaporation.
JP4942753B2 (en) 2005-09-27 2012-05-30 センター フォア アプライド プロテオミクス アンド モレキュラー メディスン How to isolate an analyte from a sample
US20070095666A1 (en) 2005-10-27 2007-05-03 Applera Corporation Surface Modification in a Manipulation Chamber
CA2632328A1 (en) 2005-12-22 2007-06-28 Ge Healthcare Bio-Sciences Ab Preparation of biomolecules
EP1832341A1 (en) 2006-03-10 2007-09-12 MPG Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Highly efficient desalination and ion exchange using a thermoreversible polymer
US7718193B2 (en) 2006-03-16 2010-05-18 University Of Washington Temperature- and pH-responsive polymer compositions
WO2007148230A2 (en) 2006-04-14 2007-12-27 Interface Biologics Incorporated Grafted polymers and uses thereof
EP2010573B1 (en) 2006-04-24 2017-03-29 Chemigate Oy Cationic polysaccharide, its preparation and use
FR2901806B1 (en) * 2006-06-01 2008-08-01 Millipore Corp DEVICE AND MICROBIOLOGICAL CONTROL ASSEMBLY
EP1873205A1 (en) 2006-06-12 2008-01-02 Corning Incorporated Thermo-responsive blends and uses thereof
WO2008004988A1 (en) 2006-07-06 2008-01-10 Agency For Science, Technology And Research Thermally responsive micelles
US20080032396A1 (en) 2006-08-02 2008-02-07 Becton, Dickinson And Company Bioreactor and Method
US7935518B2 (en) 2006-09-27 2011-05-03 Alessandra Luchini Smart hydrogel particles for biomarker harvesting
EP1923461A1 (en) 2006-11-15 2008-05-21 Millipore Corporation A bioreactor
US8057092B2 (en) 2006-11-30 2011-11-15 Corning Incorporated Disposable spinner flask
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
WO2008079280A1 (en) 2006-12-21 2008-07-03 Millipore Corporation Purification of proteins
WO2008091740A2 (en) 2007-01-22 2008-07-31 Genentech, Inc. Polyelectrolyte precipitation and purification of antibodies
US8137559B2 (en) 2007-02-09 2012-03-20 Ge Healthcare Bio-Sciences Ab Liquid clarification
EP3332806A1 (en) * 2007-03-05 2018-06-13 OM Pharma Bacterial extract for digestive or urinary tract disorders and process for its preparation
US7981688B2 (en) 2007-03-08 2011-07-19 University Of Washington Stimuli-responsive magnetic nanoparticles and related methods
US20080284163A1 (en) 2007-05-15 2008-11-20 Millipore Corporation Connector for flexible tubing
US8105493B2 (en) 2007-06-29 2012-01-31 Jnc Corporation Aggregation and dispersion methods of magnetic particles, separation and detection methods using the same and detection kit
US9433922B2 (en) 2007-08-14 2016-09-06 Emd Millipore Corporation Media for membrane ion exchange chromatography based on polymeric primary amines, sorption device containing that media, and chromatography scheme and purification method using the same
WO2009047587A1 (en) 2007-10-12 2009-04-16 Ecole Polytechnique Federale De Lausanne (Epfl) Magnetic, paramagnetic and/or superparamagnetic nanoparticles
CA2712104A1 (en) 2008-01-14 2009-07-23 The University Of Melbourne Flotation aids and processes for using the same
AU2008354927B2 (en) 2008-04-18 2012-10-04 S.P.C.M. Sa Functionalized cationic polyamines and their use to reduce the NDMA formation during the treatment of aqueous systems, and applications in the water treatment industry, including wastewater and drinking water treatment processes
GB0809404D0 (en) 2008-05-23 2008-07-02 Univ Sheffield Method
WO2009145722A1 (en) 2008-05-30 2009-12-03 Ge Healthcare Bio-Sciences Ab Separation method utilizing polyallylamine ligands
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
EP2307350A4 (en) 2008-06-27 2013-12-04 Stc Unm Structure, synthesis, and applications for oligo phenylene ethynylenes
FR2934049B1 (en) 2008-07-16 2010-10-15 Millipore Corp UNIT AND METHOD FOR PREPARING A SAMPLE FOR THE MICROBIOLOGICAL ANALYSIS OF A LIQUID
AU2008221604B2 (en) 2008-09-22 2010-04-22 Commonwealth Scientific And Industrial Research Organisation Temperature-responsive polymer particles in protein separation applications
US20110020327A1 (en) 2008-12-16 2011-01-27 Millipore Corporation Purification of proteins
SG171446A1 (en) 2008-12-16 2011-07-28 Millipore Corp Stirred tank reactor and method
CN102272146A (en) 2009-01-13 2011-12-07 通用电气健康护理生物科学股份公司 Precipitation of biomolecules with negatively charged polymers
BRPI1003999B1 (en) 2009-01-30 2020-03-17 Solenis Technologies Cayman, L.P. POLYMERS CONTAINING QUATERNARY VINYLAMINE AND PAPER MANUFACTURING METHOD
US9080933B2 (en) 2009-11-09 2015-07-14 University Of Washington Through Its Center For Commercialization Stimuli-responsive polymer diagnostic assay comprising magnetic nanoparticles and capture conjugates
US20120077249A1 (en) 2010-04-20 2012-03-29 Millipore Corporation Separation Of Virus And/Or Protein From Nucleic Acids By Primary Amines
SG10201804385YA (en) 2010-05-17 2018-06-28 Emd Millipore Corp Stimulus responsive polymers for the purification of biomolecules
EP2580349A2 (en) 2010-06-08 2013-04-17 EMD Millipore Corporation Methods of detecting residual amounts of polymers used in the purification of biomolecules
JP6138116B2 (en) 2011-05-03 2017-05-31 アバンター・パフォーマンス・マテリアルズ・インコーポレイテッドAvantor Performance Materials, Inc. Novel chromatographic media based on allylamine and allylamine derivatives for protein purification
US20120283419A1 (en) 2011-05-03 2012-11-08 Avantor Performance Materials, Inc. Separation of protein monomers from aggregates by solid weak anion exchange support functionalized with amine moieties
US20150239956A1 (en) 2012-06-27 2015-08-27 Asahi Kasei Medical Co., Ltd. High-affinity antibody and method for manufacturing the same
EP2682168A1 (en) 2012-07-02 2014-01-08 Millipore Corporation Purification of biological molecules
US20150218208A1 (en) 2012-08-27 2015-08-06 Asahi Kasei Medical Co., Ltd. Method for purifying antibody by temperature-responsive chromatography
AR093330A1 (en) 2012-11-01 2015-06-03 Novozymes As METHOD FOR DNA REMOVAL
JP6255034B2 (en) 2012-12-11 2017-12-27 キアゲン ゲーエムベーハー Preparation of silica particles
JP6410734B2 (en) 2013-02-06 2018-10-24 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Method for reducing the aggregate content of a protein preparation
CN105026418B (en) 2013-02-06 2019-01-11 新加坡科技研究局 Method of purifying protein
CN105008383A (en) 2013-02-26 2015-10-28 新加坡科技研究局 Protein purification in the presence of nonionic organic polymers and electropositive surfaces
CN105189530B (en) 2013-02-28 2019-06-07 新加坡科技研究局 The chromatogram purification antibody from shortage chromatinic cell culture harvest object
CN105008384A (en) 2013-02-28 2015-10-28 新加坡科技研究局 Protein purification in the presence of nonionic organic polymers at elevated conductivity

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556302A (en) * 1969-01-06 1971-01-19 Amicon Corp Filtration apparatus having flow distributor
US3702806A (en) * 1970-09-03 1972-11-14 William Emil Oliva Disposable culture media container
US4839046A (en) * 1987-08-20 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Bio-reactor chamber
US6147176A (en) * 1988-12-19 2000-11-14 Cytec Technology Corp. High performance polymer flocculating agents nonionic polymers
US6191242B1 (en) * 1988-12-19 2001-02-20 Cytec Technology Corp. Process for making high performance anionic polymeric flocculating agents
US5171450A (en) * 1991-03-20 1992-12-15 Nalco Chemical Company Monitoring and dosage control of tagged polymers in cooling water systems
US5770358A (en) * 1991-09-18 1998-06-23 Affymax Technologies N.V. Tagged synthetic oligomer libraries
US5237499A (en) * 1991-11-12 1993-08-17 Garback Brent J Computer travel planning system
US5258122A (en) * 1992-04-16 1993-11-02 Amicon, Inc. Cross-flow filter device with pressure-balancing feature
US5549332A (en) * 1992-10-09 1996-08-27 Judson; Nancy L. Travel planner
US5840851A (en) * 1993-07-23 1998-11-24 Plomer; J. Jeffrey Purification of hemoglobin
US5512480A (en) * 1994-03-11 1996-04-30 Baxter International Inc. Flow-through bioreactor with grooves for cell retention
US5802492A (en) * 1994-06-24 1998-09-01 Delorme Publishing Company, Inc. Computer aided routing and positioning system
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US5846816A (en) * 1995-01-13 1998-12-08 Enviro Research Pty Ltd. Apparatus for biomass production
US6821515B1 (en) * 1995-07-27 2004-11-23 Genentech, Inc. Protein formulation
US5622857A (en) * 1995-08-08 1997-04-22 Genespan Corporation High performance cell culture bioreactor and method
US5998588A (en) * 1995-09-01 1999-12-07 University Of Washington Interactive molecular conjugates
US6024955A (en) * 1995-11-01 2000-02-15 Toagosei Co. Ltd. Peptides and monoclonal antibodies
US5879564A (en) * 1995-11-14 1999-03-09 Cytec Technology Corp. High performance polymer flocculating agents
US6197522B1 (en) * 1996-01-18 2001-03-06 Rohm And Haas Company Method for identifying and quantifying polymers utilizing immunoassay techniques
US5924075A (en) * 1996-01-24 1999-07-13 Toyota Jidosha Kabushiki Kaisha Itinerary preparing system
US6737235B1 (en) * 1996-03-20 2004-05-18 Bio Merieux Nucleic acid isolation
US6133047A (en) * 1996-05-24 2000-10-17 Bio Merieux Superparamagnetic monodisperse particles
US5842145A (en) * 1996-07-08 1998-11-24 Zimmer; John S. Apparatus for providing individualized maps to pedestrians
US5994560A (en) * 1996-08-29 1999-11-30 Hoechst Celanese Corp. Resolution of racemic mixtures using polymers containing chiral units
US6127526A (en) * 1996-11-27 2000-10-03 Genentech, Inc. Protein purification by Protein A chromatography
US6372141B1 (en) * 1997-01-24 2002-04-16 Amersham Pharmacia Biotech K.K. Method for separating PTH amino acids
US6358730B1 (en) * 1997-01-29 2002-03-19 Pall Corporation Filtration assembly and culture device
US5929214A (en) * 1997-02-28 1999-07-27 Cornell Research Foundation, Inc. Thermally responsive polymer monoliths
US6852819B2 (en) * 1997-12-09 2005-02-08 Agency Of Industrial Science & Technology Miti Stimuli-responsive polymer utilizing keto-enol tautomerization and stimuli-responsive separating material and chemical-releasing capsule comprising the same
US6858694B2 (en) * 1997-12-09 2005-02-22 Agency Of Industrial Science And Technology Miti Stimuli-responsive polymer utilizing keto-enol tautomerization and stimuli-responsive separating material and chemical-releasing capsule comprising the same
US6521341B1 (en) * 1998-01-06 2003-02-18 Bio Merieux Magnetic particles, method for obtaining same and uses for separating molecules
US6706187B1 (en) * 1998-05-22 2004-03-16 Teruo Okano Packing material for chromatography having novel characteristic and method for isolation of substance using the same
US6307013B1 (en) * 1998-07-21 2001-10-23 Monsanto Technology Llc Clarification of protein precipitate suspensions using anionic polymeric flocculants
US20020058786A1 (en) * 1998-07-21 2002-05-16 Monsanto Technology Llc. Clarification of protein precipitate suspensions using anionic polymeric flocculants
US6221655B1 (en) * 1998-08-01 2001-04-24 Cytosignal Spin filter assembly for isolation and analysis
US6245555B1 (en) * 1998-09-01 2001-06-12 The Penn State Research Foundation Method and apparatus for aseptic growth or processing of biomass
US6709862B2 (en) * 1998-09-01 2004-03-23 The Penn State Research Foundation Growing cells in a reservoir formed of a flexible sterile plastic liner
US6534633B1 (en) * 1998-10-21 2003-03-18 Altor Bioscience Corporation Polyspecific binding molecules and uses thereof
US6023241A (en) * 1998-11-13 2000-02-08 Intel Corporation Digital multimedia navigation player/recorder
US6454950B1 (en) * 1998-12-30 2002-09-24 Amersham Pharmacia Biotech Ab Separation method utilizing liquid-liquid partition
US6830670B1 (en) * 1998-12-30 2004-12-14 Institut Curie Heat-sensitive medium for separating species in a separating channel and use thereof
US6716593B1 (en) * 1999-01-07 2004-04-06 Quidel Corporation Pyridinium crosslinks assay
US6956077B1 (en) * 1999-01-29 2005-10-18 Amersham Biosciences Kk Temperature-responsive polymer compound and process for producing the same
US20050224415A1 (en) * 1999-01-29 2005-10-13 Amersham Biosciences Kk Temperature-responsive polymer compound and process for producing the same
US6538089B1 (en) * 1999-02-05 2003-03-25 Forskarpatent I Syd Ab Gels with a shape memory
US6565872B2 (en) * 1999-02-16 2003-05-20 Xiao Yu Wu Polymeric system for drug delivery and solute separation
US6139746A (en) * 1999-02-22 2000-10-31 Kopf; Henry B. Method and apparatus for purification of biological substances
US6582926B1 (en) * 1999-03-19 2003-06-24 Duke University Methods of using bioelastomers
US20030059840A1 (en) * 1999-03-19 2003-03-27 Ashutosh Chilkoti Methods of using bioelastomers
US6046690A (en) * 1999-04-06 2000-04-04 Evans, Iii; David Method and system for communicating at a stadium event by altering the wave
US6689836B2 (en) * 1999-09-08 2004-02-10 Council Of Scientific And Industrial Research Process for the preparation of thermoprecipitating affinity polymers
US6420487B1 (en) * 1999-09-08 2002-07-16 Council Of Scientific And Industrial Research Process for the preparation of thermoprecipitating affinity polymers
US6294622B1 (en) * 1999-09-27 2001-09-25 Ecole Polytechnique Federale De Lausanne (Epfl) Polymer flocculants with improved dewatering characteristics
US6258275B1 (en) * 1999-10-01 2001-07-10 Ecole Polytechnique Federale De Lausanne Affinity macroligands
US6544424B1 (en) * 1999-12-03 2003-04-08 Refined Technology Company Fluid filtration system
US6805793B2 (en) * 2000-03-23 2004-10-19 Japan Chemical Innovation Institute Separatory material with the use of stimulus-responsive polymer and separation method by using the separatory material
US6641735B1 (en) * 2000-03-23 2003-11-04 Japan Chemical Innovation Institute Separatory material with the use of stimulus-responsive polymer and separation method by using the separatory material
US20040134846A1 (en) * 2000-04-05 2004-07-15 Yoshikatsu Akiyama Novel material for use in separation and separating method using the same
US6622084B2 (en) * 2000-06-02 2003-09-16 Compudigm International Limited Travel route planner system and method
US7599847B2 (en) * 2000-06-09 2009-10-06 Airport America Automated internet based interactive travel planning and management system
US20030186293A1 (en) * 2000-08-21 2003-10-02 Noriyuki Ohnishi Polymers
US20050158782A1 (en) * 2000-08-21 2005-07-21 Hirotaka Furukawa Magnetic fine particles having lower critical solution temperature
US6863437B2 (en) * 2000-08-23 2005-03-08 National Institute Of Advanced Industrial Science And Technology Temperature-responsive polymer/polymer complex
US20040039177A1 (en) * 2000-10-13 2004-02-26 Hidenori Yamanaka Stimulus responsive affinity chromatographic material and separation/purification method
US20020098567A1 (en) * 2000-11-29 2002-07-25 Council Of Scientific & Industrial Research Thermoprecipitating polymer containing enzyme specific ligands, process for the preparation thereof, and use thereof for the separation of enzymes
US6867268B2 (en) * 2000-11-29 2005-03-15 Council Of Scientific And Industrial Research Thermoprecipitating polymer containing enzyme specific ligands, process for the preparation thereof, and use thereof for the separation of enzymes
US20040010163A1 (en) * 2001-05-14 2004-01-15 Frank Hilbrig Method for the separation of oligomeric n-substituted (meth)acrylamide compounds and conjugates thereof which are reversibly thermally precipitating
US7212983B2 (en) * 2001-05-15 2007-05-01 William Gibbens Redmann Method and apparatus for providing visitors with a personalized itinerary and managed access to attractions
US7493210B2 (en) * 2001-08-09 2009-02-17 International Business Machines Corporation Vehicle navigation method
US6638918B2 (en) * 2001-11-09 2003-10-28 The Procter & Gamble Company Chitosan compositions
US6765081B2 (en) * 2001-12-19 2004-07-20 Industrial Technology Research Institute Thermal responsive, water-soluble polymers
US6926832B2 (en) * 2002-01-04 2005-08-09 Nalco Company Method of using water soluble polymers in a membrane biological reactor
US20050016620A1 (en) * 2002-04-26 2005-01-27 Stephen Proulx Disposable, sterile fluid transfer device
US20050175702A1 (en) * 2002-06-01 2005-08-11 Muller-Schulte Detlef P. Thermosensitive polymer carriers having a modifiable physical structure for biochemical analysis, diagnosis and therapy
US20040058436A1 (en) * 2002-09-20 2004-03-25 East China University Of Science And Technology Cell-detaching reactor for scaled-up inoculation of anchorage-dependent cell culture
US20040062140A1 (en) * 2002-09-27 2004-04-01 Cadogan David Phillip Bioprocess container, bioprocess container mixing device and method of use thereof
US6673598B1 (en) * 2002-10-29 2004-01-06 Synthecon, Inc. Disposable culture bag
US6770758B2 (en) * 2002-12-27 2004-08-03 Industrial Technology Research Institute Polysaccharide separation method
US20050033616A1 (en) * 2003-08-05 2005-02-10 Ezrez Software, Inc. Travel management system providing customized travel plan
US20050063259A1 (en) * 2003-09-22 2005-03-24 Fumio Isshiki Optical information recording apparatus
US20090130704A1 (en) * 2003-11-13 2009-05-21 Gyure Dale C Novel bioreactor
US20050158851A1 (en) * 2004-01-12 2005-07-21 Bioreactor Systems And Disposable Bioreactor Bioreactor systems and disposable bioreactor
US20080046298A1 (en) * 2004-07-29 2008-02-21 Ziv Ben-Yehuda System and Method For Travel Planning
US20070078729A1 (en) * 2005-03-14 2007-04-05 Brown Kevin L Itinerary planning tool, system, method, software, and hardware
US20060270036A1 (en) * 2005-04-22 2006-11-30 Hyclone Laboratories, Inc. Gas spargers and related container systems
US20070198304A1 (en) * 2006-01-16 2007-08-23 Cohen Elliot J System for online travel planning
US20070298451A1 (en) * 2006-06-27 2007-12-27 Sebastien Ribault Method and unit for preparing a sample for the microbiological analysis of a liquid
US20080201227A1 (en) * 2006-11-07 2008-08-21 Lucia Urban Bakewell Interactive, Internet-based, trip planning, travel resource, travel community, virtual travel, travel-based education, travel-related gaming and virtual/live tour system, methods, and processes, emphasizing a user's ability to tailor complete travel, trip, route, game and touring choices to unique user-specified personal interests, preferences, and special requirements for self and companions
US20080255027A1 (en) * 2006-12-21 2008-10-16 Wilson Moya Purification of proteins
US20090012824A1 (en) * 2007-07-06 2009-01-08 Brockway Gregg Apparatus and method for supplying an aggregated and enhanced itinerary
US20090058071A1 (en) * 2007-08-30 2009-03-05 Hui Ting Cheng Travel guide booklet with removable cards
US20090177513A1 (en) * 2008-01-04 2009-07-09 Colin John Eckhart Device and Method for Dynamic Itinerary Planning and Tracking for Mobile Communications Device
US20090216633A1 (en) * 2008-02-26 2009-08-27 Travelocity.Com Lp System, Method, and Computer Program Product for Assembling and Displaying a Travel Itinerary
US20090265197A1 (en) * 2008-04-17 2009-10-22 Kidult Inc Limited System and method for building shared itineraries
US20090265651A1 (en) * 2008-04-22 2009-10-22 Hodson Ronald D System and method for managing a travel itinerary
US20090313679A1 (en) * 2008-06-13 2009-12-17 Yahoo! Inc. Personal travel organizer and online travelogue
US20090313055A1 (en) * 2008-06-13 2009-12-17 Natalie Martin Computer-based system and method for facilitating travel planning for a prospective traveler

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090930B2 (en) 2006-06-27 2015-07-28 Emd Millipore Corporation Method and unit for preparing a sample for the microbiological analysis of a liquid
US9410181B2 (en) 2006-06-27 2016-08-09 Emd Millipore Corporation Method and unit for preparing a sample for the microbiological analysis of a liquid
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
US10793593B2 (en) 2006-12-21 2020-10-06 Emd Millipore Corporation Purification of proteins
US10233211B2 (en) 2006-12-21 2019-03-19 Emd Millipore Corporation Purification of proteins
US8362217B2 (en) 2006-12-21 2013-01-29 Emd Millipore Corporation Purification of proteins
US9376464B2 (en) 2006-12-21 2016-06-28 Emd Millipore Corporation Purification of proteins
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
US9803165B2 (en) 2008-12-16 2017-10-31 Emd Millipore Corporation Stirred tank reactor and method
US9217048B2 (en) 2010-05-17 2015-12-22 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
US9731288B2 (en) 2010-05-17 2017-08-15 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
US8691918B2 (en) 2010-05-17 2014-04-08 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
US9587216B2 (en) * 2012-06-14 2017-03-07 Aglaris Cell S.L. Cell culture method and system
US20150159128A1 (en) * 2012-06-14 2015-06-11 Aglaris Cell S.L. Cell culture method and system
US10494599B2 (en) * 2012-06-14 2019-12-03 Algaris Cell S.L. Cell culture method and system

Also Published As

Publication number Publication date
JP2012511929A (en) 2012-05-31
SG171446A1 (en) 2011-07-28
US20130005950A1 (en) 2013-01-03
EP2370561A4 (en) 2013-07-24
CN102257122B (en) 2015-07-29
EP2370561B1 (en) 2019-08-07
WO2010074953A1 (en) 2010-07-01
JP2013155187A (en) 2013-08-15
JP5906284B2 (en) 2016-04-20
JP2014195476A (en) 2014-10-16
EP2370561A1 (en) 2011-10-05
US9803165B2 (en) 2017-10-31
JP5863699B2 (en) 2016-02-17
CN102257122A (en) 2011-11-23
DK2370561T3 (en) 2019-10-21
ES2749232T3 (en) 2020-03-19
CN105037535A (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US9803165B2 (en) Stirred tank reactor and method
AU756832B2 (en) Purification of biological substances
US9321805B2 (en) Downstream bioprocessing device
US11846635B2 (en) Magnetic immunoglobulin-binding particles
EP1775000A2 (en) Method of producing universal blood plasma from blood
JP5887665B2 (en) Expanded bed column and disposable chromatography
US20200056144A1 (en) Cell culture clarification
CN109163951B (en) Preparation facilities of TMAO negative sample
JP2022513463A (en) Volumetric In-line Product Concentration to Reduce Loading Flow Rate and Increase Productivity for Binding and Elution Chromatographic Purification

Legal Events

Date Code Title Description
AS Assignment

Owner name: MILLIPORE CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOYA, WILSON;DUPONT, ALISON;REEL/FRAME:024192/0249

Effective date: 20100329

AS Assignment

Owner name: EMD MILLIPORE CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:MILLIPORE CORPORATION;REEL/FRAME:027620/0891

Effective date: 20120101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION