USRE40070E1 - Antibody purification - Google Patents

Antibody purification Download PDF

Info

Publication number
USRE40070E1
USRE40070E1 US11/140,525 US14052505A USRE40070E US RE40070 E1 USRE40070 E1 US RE40070E1 US 14052505 A US14052505 A US 14052505A US RE40070 E USRE40070 E US RE40070E
Authority
US
United States
Prior art keywords
protein
antibody
support
buffer
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/140,525
Inventor
Paula Shadle
John C. Erickson
Robert G. Scott
Thomas M. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline LLC
Original Assignee
SmithKline Beecham Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22740445&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE40070(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SmithKline Beecham Corp filed Critical SmithKline Beecham Corp
Priority to US11/140,525 priority Critical patent/USRE40070E1/en
Priority to US11/804,729 priority patent/USRE41555E1/en
Application granted granted Critical
Publication of USRE40070E1 publication Critical patent/USRE40070E1/en
Priority to US12/403,799 priority patent/USRE41595E1/en
Assigned to GLAXOSMITHKLINE LLC reassignment GLAXOSMITHKLINE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SMITHKLINE BEECHAM CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • B01D15/325Reversed phase
    • B01D15/327Reversed phase with hydrophobic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3809Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1027Paramyxoviridae, e.g. respiratory syncytial virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4

Definitions

  • the reissue applications are application Ser. No. 11 / 140 , 525 ( the present reissue ) and 11 / 804 , 729 which is a continuation of the reissue application Ser. No. 11 / 140 , 525 .
  • This invention relates to the field of protein purification. More specifically, this invention relates to the application of Hydrophobic Interaction Chromatography (HIC) to the separation of Immunoglobulin G monomers and to the integration of HIC into a combination chromatographic protocol for the purification of IgG antibody molecules.
  • HIC Hydrophobic Interaction Chromatography
  • Size exclusion chromatography otherwise known as gel filtration or gel permeation chromatography, relies on the penetration of macromolecules in a mobile phase into the pores of stationary phase particles. Differential penetration is a function of the hydrodynamic volume of the particles. Accordingly, under ideal conditions the larger molecules are excluded from the interior of the particles while the smaller molecules are accessible to this volume and the order of elution can be predicted by the size of the protein because a linear relationship exists between elution volume and the log of the molecular weight.
  • Chromatographic supports based on cross-linked dextrans e.g. SEPHADEX®, spherical agarose beads e.g. SEPHAROSE® (both commercially available from Pharmacia AB. Uppsala, Sweden), based on cross-linked polyacrylamides e.g. BIO-GEL ® (commercially available from BioRad Laboratories, Richmond, Calif.) or based on ethylene glycol-methacrylate copolymer e.g. TOYOPEARL HW65 (commercially available from Toso Haas Co., Tokyo, Japan) are useful in forming the various chromatographic columns for size exclusion, or HIC chromatography in the practice of certain aspects of this invention.
  • cross-linked dextrans e.g. SEPHADEX®, spherical agarose beads e.g. SEPHAROSE® (both commercially available from Pharmacia AB. Uppsala, Sweden
  • cross-linked polyacrylamides e.g. BIO-G
  • Precipitation methods are predicated on the fact that in crude mixtures of proteins the solubilities of individual proteins are likely to vary widely.
  • solubility of a protein in an aqueous medium depends on a variety of factors, for purposes of this discussion it can be said generally that a protein will be soluble if its interaction with the solvent is stronger than its interaction with protein molecules of the same or similar kind.
  • precipitants such as salts of monovalent cations (e.g. ammonium sulfate) compete with proteins for water molecules.
  • the proteins become “dehydrated” reducing their interaction with the aqueous environment and increasing the aggregation with like or similar proteins, resulting in precipitation from the medium.
  • Ion exchange chromatography involves the interaction of charged functional groups in the sample with ionic functional groups of opposite charge on an adsorbent surface. Two general types of interaction are known. Anionic exchange chromatography is mediated by negatively charged amino acid side chains (e.g., aspartic acid and glutamic acid) interacting with positively charged surfaces and cationic exchange chromatography is mediated by positively charged amino acid residues (e.g., lysine and arginine) interacting with negatively charged surfaces.
  • negatively charged amino acid side chains e.g., aspartic acid and glutamic acid
  • cationic exchange chromatography is mediated by positively charged amino acid residues (e.g., lysine and arginine) interacting with negatively charged surfaces.
  • Affinity chromatography relies on the specific interaction of the protein with an immobilized ligand.
  • the ligand can be specific for the particular protein of interest in which case the ligand is a substrate, substrate analog, inhibitor, receptor or antibody. Alternatively, the ligand may be able to react with a number of related proteins.
  • Such group specific ligands as adenosine monophosphate, adenosine diphosphate, nicotine adenine dinucleotide or certain dyes may be employed to recover a particular class of proteins.
  • Staphylococcal Protein A is known to bind certain antibodies of the IgG class (See: Ey, P. L. et al. Immunochemistry 15:429-36 (1978)).
  • antisera raised in heterologous species e.g. rabbit anti-mouse antisera
  • can be used to separate general groups of antibodies. See, Current Protocols in Molecular Biology Supra, Chap 11.
  • Hydrophobic interaction chromatography was first developed following the observation that proteins could be retained on affinity gels which comprised hydrocarbon spacer arms but lacked the affinity ligand. Although in this field the term hydrophobic chromatography is sometimes used, the term hydrophobic interaction chromatography (HIC) is preferred because it is the interaction between the solute and the gel that is hydrophobic not the chromatographic procedure. Hydrophobic interactions are strongest at high ionic strength, therefore, this form of separation is conveniently performed following salt precipitations or ion exchange procedures. Elution from HIC supports can be effected by alterations in solvent, pH, ionic strength, or by the addition of chaotropic agents or organic modifiers, such as ethylene or propylene glycol.
  • HIC hydrophobic interaction chromatography
  • HIC high performance liquid chromatography
  • HIC can be usefully employed to remove contaminating Protein A from IgG mixtures eluted from Protein A chromatographic support.
  • This invention relates to the application of HIC to the separation of monomeric IgG from mixtures containing same and to the integration of HIC into a protocol combining Protein A and ion exchange chromatography for the purification of immunoglobulin G molecules.
  • This invention relates to a method for separating IgG monomers from aggregates in mixtures containing same by contacting said mixture with a hydrophobic interaction chromatographic support and selectively eluting the monomer from the support.
  • the invention provides for the purification of an IgG antibody from conditioned cell culture medium containing same comprising sequentially subjecting the medium to (a) Protein A, (b) ion exchange chromatography, and (c) hydrophobic interaction chromatography.
  • the invention provides a method for removing Protein A from a mixture comprising Protein A and antibodies comprising contacting said mixture with a hydrophobic interaction chromatography support and selectively eluting the antibody from the support.
  • FIG. 1 illustrates a flow diagram of one process for purifying an antibody according to this invention.
  • This invention relates to protein purification techniques which have application to the large scale purification of immunoglobulin molecules.
  • the invention is particularly useful because it permits the recovery of monomeric IgG of >95% protein purity.
  • the invention may be applied to the purification of a number of different immunoglobulin G molecules.
  • Antibody-like proteins are proteins which may be purified by the protocol described herein, such protocol being modified if necessary by routine, non-inventive adjustments that do not entail undue experimentation. Such proteins include isotypes. allotypes and alleles of immunoglobulin genes, truncated forms, altered antibodies, such as chimeric antibodies, humanized antibodies and the like, chemically modified forms such as by PEG treatment, and fusion proteins containing an immunoglobulin moiety. These proteins are referred to as antibody-like because they possess or retain sufficient immunoglobulin protein properties (e.g. F c determinants) to admit to purification by the process of this invention. Unless specifically identified otherwise, the term antibody or immunoglobulin protein also includes antibody-like proteins.
  • the immunoglobulin molecules of this invention can be isolated from a number of sources, including without limitation, serum of immunized animals, ascites fluid, hybridoma or myeloma supernatants, conditioned media derived from culturing a recombinant cell line that expresses the immunoglobulin molecule and from all cell extracts of immunoglobulin producing cells.
  • This invention is particularly useful for the purification of antibodies from conditioned cell culture media of a variety of antibody producing recombinant cell lines. Although one may expect some variation from cell line to cell line and among the various antibody products, based on the disclosure herein, it is well within the purview of one of ordinary skill in this an to adapt the invention herein to a particular combination of antibody protein and producing cell line.
  • genes encoding proteins such as antibodies may be cloned by incorporating DNA sequences coding for the desired regions of the polypeptide into a recombinant DNA vehicle (e.g., vector) and transforming or transfecting suitable prokaryotic or eukaryotic hosts.
  • suitable prokaryotic hosts include but are not limited to Escherichia, Streptomyces, Bacillus and the like.
  • Suitable eukaryotic hosts include but are not limited to yeast, such as Saccharomyces and animal cells in culture such as VERO, HeLa, mouse C127, Chinese hamster ovary (CHO), WI-38, BHK, COS, MDCK, myeloma, and insect cell lines.
  • Particularly preferred hosts are CHO cell lines deficient in dihydrofolate reductase such as ATCC CRL 1793, CRL 9096 and other cell lines described herein below.
  • Such recombinant techniques have now become well known and are described in Methods in Enzymology, (Academic Press) Volumes 65 and 69 (1979), 100 and 101 (1983), and the references cited therein.
  • An extensive technical discussion embodying most commonly used recombinant DNA methodologies can be found in Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory (1982) or Current Protocols in Molecular Biology, Greene Publishing, Wiley Interscience (1988,1991,1993).
  • cDNA cloning messenger RNA (mRNA) is isolated from cells known or suspected of producing the desired protein. Through a series of enzymatic reactions, the mRNA population of the cells is copied into a complementary DNA (cDNA). The resulting cDNA is then inserted into cloning vehicles and subsequently used to transform a suitable prokaryotic or eukaryotic host.
  • the resulting cDNA “library” is comprised of a population of transformed host cells, each of which contain a single gene or gene fragment. The entire library, in theory, provides a representation sample of the coding information present in the mRNA mixture used as the starting material.
  • the libraries can be screened using nucleic acid or antibody probes in order to identify specific DNA sequences. Once isolated, these DNA sequences can be modified or can be assembled into complete genes.
  • CDRs Complementarity Determining Regions
  • PCT/GB91/01554 discloses the production of “humanized” antibodies useful for the treatment and prevention of Respiratory Syncytial Virus (RSV) infection.
  • RSV Respiratory Syncytial Virus
  • the entire variable region of antibody gene can be fused to the constant domain of a second antibody to form an altered antibody otherwise known as a “chimeric antibody”.
  • PCT/US92/06194 (published as WO93/02108) discloses a monkey/human chimeric antibody reactive with the human CD4 receptor.
  • the DNA may be introduced into an expression vector and that construction used to transform an appropriate host cell.
  • An expression vector is characterized as having expression control sequences as defined herein, such that when a DNA sequence of interest is operably linked thereto, the vector is capable of directing the production of the product encoded by the DNA sequence of interest in a host cell containing the vector.
  • a particularly efficacious application of this protocol to recombinant antibody production is found in the Harris, et al. PCT Applications WO92/04381, published Mar. 19, 1992, cited above, and in the Newman et al. PCT Application WO93/02108, published Feb. 4, 1993, cited above.
  • the product After the recombinant product is produced it is desirable to recover the product. If the product is exported by the cell producing it, the product can be recovered directly from the cell culture medium. If the product is retained intracellularly, the cells must be physically disrupted by mechanical, chemical or biological means in order to obtain the intracellular product.
  • the purification protocol should not only provide a protein product that is essentially free of other proteins, by which is meant at least 80% and preferably greater than 95% pure with respect to total protein in the preparation, but also eliminate or reduce to acceptable levels other host cell contaminants, DNA, RNA, potential pyrogens and the like.
  • aggregation of the 150,000 dalton IgG product into higher molecular weight species can occur. Accordingly, for purposes of product purity and standardization it is also useful to separate the native 150,000 dalton monomeric species from higher molecular weight aggregates and other misfolded forms. While it is appreciated that the 150,000 dalton IgG species is composed of four polypeptide chains (2 heavy chains and 2 light chains), the 150,000 dalton species is referred to herein as a “monomer” or “monomeric IgG”.
  • a variety of host cells may be used for the production of the antibodies of this invention.
  • the choice of a particular host cell is well within the purview of the ordinary skilled artisan taking into account, inter alia, the nature of the antibody, its rate of synthesis, its rate of decay and the characteristics of the recombinant vector directing the expression of the antibody.
  • the choice of the host cell expression system dictates to a large extent the nature of the cell culture procedures to be employed.
  • the selection of a particular mode of production be it batch or continuous, spinner or air lift, liquid or immobilized can be made once the expression system has been selected.
  • fluidized bed bioreactors hollow fiber bioreactors, roller bottle cultures, or stirred tank bioreactors, with or without cell microcarriers may variously be employed.
  • the criteria for such selection are appreciated in the cell culture art. They are not detailed herein because they are outside the scope of this invention.
  • This invention relates to the purification of antibodies given their existence in a conditioned cell culture medium, hybridoma supernatant, antiserum, myeloma supernatant or ascites fluid.
  • HIC hydrophobic interaction chromatography
  • a number of chromatographic supports may be employed in the preparation of HIC columns, the most extensively used are agarose, silica and organic polymer or co-polymer resins.
  • Useful hydrophobic ligands include but are not limited to alkyl groups having from about 2 to about 8 carbon atoms, such as a butyl, propyl, or octyl; or aryl groups such as phenyl.
  • HIC products for gels and columns may be obtained commercially from suppliers such as Pharmacia LKB AB, Uppsala, Sweden under the product names butyl-SEPHAROSE®, phenyl or butyl-SEPHAROSE® CL-4B, butyl-SEPHAROSE® FF, octyl-SEPHAROSE® FF and phenyl-SEPHAROSE® FF; Tosoh Corporation, Tokyo, Japan under the product names TOYOPEARL ether 650, phenyl 650 or butyl 650 (Fractogel); Miles-Yeda, Rehovot, Israel under the product name alkyl-agarose, wherein the alkyl group contains from 2-10 carbon atoms, and J. T. Baker, Phillipsburg, N.J. under the product name Bakerbond WP-HI-propyl.
  • Ligand density is an important parameter in that it influences not only the strength of the interaction but the capacity of the column as well.
  • the ligand density of the commercially available phenyl or octyl phenyl gels is on the order of 40 ⁇ moles/ml gel bed.
  • Gel capacity is a function of the particular protein in question as well as pH, temperature and salt type and concentration but generally can be expected to fall in the range of 3-20 mg/ml of gel.
  • a particular gel can be determined by the skilled artisan. In general the strength of the interaction of the protein and the HIC ligand increases with the chain length of the alkyl ligands but ligands having from about 4 to about 8 carbon atoms are suitable for most separations.
  • a phenyl group has about the same hydrophobicity as a pentyl group, although the selectivity can be quite different owing to the possibility of pi-pi orbital interaction with aromatic groups on the protein. Selectively may also be affected by the chemistry of the supporting resin.
  • Adsorption of the proteins to a HIC column is favored by high salt concentrations, but the actual concentrations can vary over a wide range depending on the nature of the protein and the particular HIC ligand chosen.
  • Various ions can be arranged in a so-called soluphobic series depending on whether they promote hydrophobic interactions (salting-out effects) or disrupt the structure of water (chaotropic effect) and lead to the weakening of the hydrophobic interactions.
  • Cations are ranked in terms of increasing salting out effect as Ba++ ⁇ Ca++ ⁇ Mg++ ⁇ Li+ ⁇ Ca+ ⁇ Na+ ⁇ K+ ⁇ R-b+ ⁇ NH 4 +, while anions may be ranked in terms of increasing chaotropic effect as PO 4 — ⁇ SO 4 — ⁇ CH 3 COO- ⁇ Cl - ⁇ Br- ⁇ NO 3 - ⁇ ClO 4 - ⁇ I- ⁇ SCN-.
  • salts may be formulated that influence the strength of the interaction as given by the following relationship: (NH 4 ) 2 SO 4 >Na 2 SO 4 >NaCl>NH 4 Cl>NaBr->NaSCN
  • salt concentrations of between about 0.75 and about 2M ammonium sulfate or between about 1 and 4M NaCl are useful.
  • Elution can be accomplished in a variety of ways: (a) by changing the salt concentration, (b) by changing the polarity of the solvent or (c) by adding detergents.
  • salt concentration adsorbed proteins are eluted in order of increasing hydrophobicity.
  • Changes in polarity may be affected by additions of solvents such as ethylene or propylene glycol or (iso)propanol, thereby decreasing the strength of the hydrophobic interactions.
  • Detergents function as displacers of proteins and have been used primarily in connection with the purification of membrane proteins.
  • HIC chromatography can be used alone to separate monomeric IgG (MW 150,000) from aggregates and misfolded species, as mentioned above, HIC is particularly useful when used in combination with other protein purification techniques. That is to say, it is preferred to apply HIC to mixtures that have been partially purified by other protein purification procedures.
  • partially purified is meant a protein preparation in which the protein of interest is present in at least 5 percent by weight, more preferably at least 10% and most preferably at least 45%.
  • mixture is meant the desired monomeric IgG antibody molecule in combination with undesirable contaminants such as, without limitation, one or more of: immunoglobulin aggregates, misfolded species, host cell protein, residue material from preceding chromatographic steps such as Protein A when employed.
  • HIC can also be appreciated in the context of an overall purification protocol for immunoglobulin proteins such as affinity purified monoclonal antibodies. It has been found to be useful, for example, to subject a sample of conditioned cell culture medium to partial purification prior to the application of HIC.
  • conditioned cell culture medium is meant a cell culture medium which has supported cell growth and/or cell maintenance and contains secreted product.
  • a sample of such medium is subjected to one or more protein purification steps prior to the application of a HIC step.
  • the sample may be subjected to affinity chromatography employing Staphylococcus Protein A as a first step.
  • Staphylococcus Protein A For example, PROSEP-A® (BioProcessing Ltd., U.K.) which consists of Protein A covalently coupled to controlled pore glass can be usefully employed.
  • Other useful Protein A formulations are Protein A SEPHAROSE® Fast Flow (Pharmacia) and TOYOPEARL 650M Protein A (TosoHaas).
  • ion exchange chromatography may be employed as a second step.
  • anionic or cationic substituents may be attached to matrices in order to form anionic or cationic supports for chromatography.
  • Anionic exchange substituents include diethylaminoethyl(DEAE), quaternary aminoethyl(QAE) and quaternary amine(Q) groups.
  • Cationic exchange substituents include carboxymethyl (CM), sulfoethyl(SE), sulfopropyl(SP), phosphate(P) and sulfonate(S).
  • Cellulosic ion exchange resins such as DE23, DE32, DE52, CM-23, CM-32 and CM-52 are available from Whatman Ltd. Maidstone, Kent, U.K.
  • SEPHADEX®-based and cross-linked ion exchangers are also known.
  • DEAE-, QAE-, CM-, and SP-SEPHADEX® and DEAE-, Q-, CM-and S-SEPHAROSE® and SEPHAROSE® Fast Flow are all available from Pharmacia AB.
  • DEAE and CM derivitized ethylene glycol-methacrylate copolymer such as TOYOPEARL DEAE-650S or M and TOYOPEARL CM-650S or M are available from Toso Haas Co., Philadelphia, Pa.
  • HIC is enhanced under increased salt concentrations
  • additional purification protocols may be added including but not necessarily limited to further ionic exchange chromatography, size exclusion chromatography, viral inactivation, concentration and freeze drying.
  • this invention was applied to the purification of several antibodies of the IgG isotype. More specifically, to a humanized antibody useful for the treatment of RSV infection described by Harris et al.; 1992, Intl. Patent Publication Number WO/92/04381, published Mar. 19, 1992 (hereinafter “RSHZ-19”) and a chimeric antibody specifically reactive with the CD4 antigen described by Newman et al. Int'l Patent Publication Number WO93/02108, published Feb. 4, 1993 (hereinafter CH-CD4).
  • RSHZ-19 humanized antibody useful for the treatment of RSV infection described by Harris et al.; 1992, Intl. Patent Publication Number WO/92/04381, published Mar. 19, 1992
  • CH-CD4 chimeric antibody specifically reactive with the CD4 antigen described by Newman et al. Int'l Patent Publication Number WO93/02108, published Feb. 4, 1993
  • An expression plasmid containing the RSHZ-19 coding sequence was cotransfected with pSV2dhfr into a dhfr-requiring Chinese Hamster Ovary cell line (CHO-DUXBII). The transfection was carried in growth medium and employed the calcium coprecipitation/glycerol shock procedure as described in: DNA Cloning, D. M. Glover ed. (Chap. 15, C. Gorman). Following transfection, the cells were maintained in growth medium for 46 hours under growth conditions (as described above) prior to the selection procedure.
  • the selection and co-amplification procedure was carried out essentially as described by R. J. Kaufman, et al. (Mol. Cell. Biol. 5:1750-1759 (1985)). Forty-six hours post transfection the cells were changed to selective medium MEM ALPHA (041-02571), 1% stock glutamine, 1% stock pen/strep (043-05070) and dialyzed bovine fetal calf serum (220-6300AJ) (Gibco, Paisley, Scotland). The cells were maintained in the selective medium for 8-10 days until dhfr+ colonies appeared. When the colonies were established the cells were changed into a selective medium containing methotrexate (A6770, Sigma Chem. Co., St. Louis, Mo.).
  • the methotrexate concentration was initially 0.02 ⁇ M and was increased stepwise to 5 ⁇ M.
  • aliquots of growth medium from growing cells were assayed for RSHZ-19 production by human IgG. Any antibody secreting recombinant cell line may be used to supply the conditioned medium for purification according to this invention, a particular cell line certainly is not required.
  • a transfected CHO cell line capable of producing RSHZ-19 can be cultured by a variety of cell culture techniques.
  • the particular method of culturing is not critical.
  • the particular recombinant production system and the particular cell culturing protocol is outside the scope of this invention.
  • the system and protocol discussed above are representative of the many options available to the skilled artisan and they are included herein for purposes of illustration only.
  • the purification protocol which is the subject of this invention is applicable, with only routine modification, to a variety of recombinant antibodies and antibody-like proteins regardless of how they are produced or cultured.
  • a chimeric monoclonal antibody to CD4 was also purified by the process of this invention.
  • the purified antibodies obtained by practicing the process of this invention have the following properties: 1) greater than 97% antibody protein by weight; 2) stable to proteolytic degradation at 4° C. for at least three months; 3) low ( ⁇ 0.1 E.U./mg protein) endotoxin; 4) low ( ⁇ 1 pg/mg protein) DNA; 5) non-antibody protein ⁇ 5% by weight; and 6) virally inactive.
  • the following examples further illustrate this invention but are not offered by way of limitation of the claims herein.
  • RSHZ 19 Respiratory Syncytial Virus
  • the process in its most preferred embodiment consists of three purification steps (Protein A affinity, cation exchange, and hydrophobic interaction chromatography), two viral inactivation steps, and a diafiltration step to exchange the product into a final buffer of choice (outlined in FIG. 1 ). All steps are carried out at room temperature (18°-25° C.). All buffers are prepared with WFI and filtered through either a 0.2 micron filter or a 10,000 MWCO membrane before use. Buffer formulations are listed in Table 1. Tables 2, 4, 6 and 8 show the column parameters for examples IA, IB, IC and ID respectively. Tables 3, 5 and 7 and 9 provide a purification summary for examples IA, IB, IC and ID respectively.
  • the first step in the process can be rapidly cycled to accommodate varying amounts of cell-free culture fluid (CCF), and has a capacity of approximately 15 grams RSHZ-19 per liter of ProSep A.
  • CCF cell-free culture fluid
  • the downstream steps of the process (Cation Exchange Chromatography (CEC) and Hydrophobic Interaction Chromatography (HIC) are scaled to accommodate approximately 130-140 grams RSHZ-19 per cycle.
  • CEC Cation Exchange Chromatography
  • HIC Hydrophobic Interaction Chromatography
  • hydrophobic interaction chromatography step has been demonstrated to remove residual Protein A that leaches from the Protein A column during elution (See: examples IA-D).
  • aggregates of IgG can be removed over HIC, as shown in examples IC and ID.
  • the cells are removed using a tangential-flow microfiltration device (Prostak) equipped with a 0.65 micron filter or equivalent.
  • the product is recovered in the permeate.
  • centrifugation can be used for small volume cultures.
  • the IgG is recovered from the CCF by adsorption chromatography on a column of ProSep A (BioProcessing Ltd.) previously equilibrated with PBS.
  • the medium is applied to the column at a flow rate up to 1000 cm/hr at a load ratio of up to 15 grams IgG per liter column volume. After loading the column, it is washed with at least 3 column volumes of PBS containing 0.1 M glycine.
  • the RSHZ-19 is eluted with a low pH buffer by applying approximately 3 column volumes of Elution Buffer.
  • the Protein A chromatography removes a large proportion of cell and media derived impurities (particularly protein and DNA in the flow-through and wash fractions), and concentrations RSHZ- 19 in the elution buffer for further processing.
  • the Protein A column eluate is collected and adjusted to pH 3.5 by the addition of 2.5M HCl.
  • the solution is transferred to a second vessel and held at pH 3.5 for at least thirty minutes to provide viral inactivation, and readjusted to pH 5.5 by the addition of Tris buffer.
  • the resulting solution is filtered through a prefilter (Millipore Polygard or equivalent) and a sterilized 0.2 ⁇ m filter (Millipore Millipak or equivalent), and held in sterile containers at 4° C., or frozen and held at ⁇ 70° C.
  • the pH 3.5 treatment provides viral inactivation, and the pH 5.5 adjustment prepares the solution for cation exchange chromatography (CEC).
  • CEC cation exchange chromatography
  • the pH inactivated Protein A eluate is further purified by CEC chromatography on column of CM SEPHAROSE FF (Pharmacia LKB).
  • the sample is applied to the equilibrated column at a flow rate of 150 cm/hr and a load ratio of ⁇ 20 grams protein per liter CM SEPHAROSE.
  • the column is washed with 3 to 5 column volumes of Equilibration Buffer.
  • the product is eluted with 3-5 column volumes of Elution Buffer.
  • the cation exchange chromatography step removes protein and non-protein impurities.
  • the cation exchange eluate is adjusted to approximately 2.0M guanidine hydrochloride by the slow addition (with mixing) of one-half volume of Guanidine Stock Solution.
  • the rate of reagent addition is adjusted so that it is added over a 5-15 minute period.
  • the solution is transferred to a second vessel, and is held for thirty minutes to achieve viral inactivation.
  • an equal volume of Ammonium Sulfate Stock Solution is slowly added (with mixing), and the hydrophobic interaction chromatography (HIC) step is performed immediately.
  • the rate of reagent addition is adjusted so that it is added over a 5-15 minute period.
  • the guanidine treatment provides a second viral inactivation step, when an acid inactivation step is employed, and keeps the RSHZ-19 soluble after ammonium sulfate addition; the addition of ammonium sulfate serves to dilute the guanidine and prepare the solution for HIC.
  • the guanidine-treated solution is further purified by application to an HIC column consisting of TOYOPEARL Phenyl-650M previously equilibrated with Equilibration Buffer.
  • the guanidine-treated solution is applied to the column at a flow rate of 150 cm/hr and a load ratio of ⁇ 20 grams protein per liter Phenyl-650M. After loading, the column is washed with 3 to 5 column volumes of Equilibration Buffer.
  • a linear gradient of decreasing ammonium sulfate is applied at a flow rate of 100-150 cm/hr, and the RSHZ-19 elutes as one major peak with impurities eluting later in the gradient.
  • the slope of the gradient is approximately 20 column volumes, starting at 100% Equilibration Buffer and ending at 100% Gradient Buffer (1.3 to 0M ammonium sulfate).
  • the peak is collected until the absorbance decreases to 20% of the maximum peak absorbance, then collection of the product fraction is ended. After the gradient ends, the column is washed with approximately 3 column volumes of Strip Buffer.
  • the HIC chromatography step removes additional protein and non-protein impurities, most notably residual Protein A, IgG aggregates, and host DNA.
  • the HIC elute is concentrated to approximately 10 milligram per milliliter using a tangential-flow ultrafiltration device (such as a Millipore CUF) outfitted with a 30,000 molecular weight cut-off filter, diafiltered into a suitable formulation buffer and filtered through a sterilized 0.2 micron filter (Millipore Millipak or equivalent) into sterilized containers.
  • a tangential-flow ultrafiltration device such as a Millipore CUF
  • Process intermediates are assayed for total protein concentration by OD280 or Bradford assay, RSHZ-19 concentration by HLPC, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Aggregated product is assessed by size exclusion HPLC on TSK3000 SWXL, and Protein A residue is assayed using an ELISA.
  • the eluate fractions from the Protein A capture and cation exchange steps are pooled based on the UV tracing on the chromatogram, and the entire peak is collected.
  • the eluate from the HIC step is pooled based on the UV tracing, and the main peak is pooled until the UV reading on the tailing side of the peak reaches 20% of the peak maximum.
  • the HIC tail fraction contains the majority of the Protein A and aggregated IgG's.
  • Buffer Name Composition PBS 20 mM sodium phosphate, 150 mM sodium chloride, pH 7 PBS/glycine PBS plus 0.1M glycine ProSep Elution Buffer 25 mM citrate, pH 3.5 CM SEPHAROSE 10 mM citrate, pH 5.5 Equilibration Buffer CM SEPHAROSE 40 mM citrate, 100 mM Elution Buffer sodium chloride, pH 6 Guanidine Stock Solution 6M guanidine hydrochloride, 50 mM sodium phosphate, pH 7 2.6M Ammonium Sulfate 2.6M ammonium sulfate, 50 mM Stock Solution sodium phosphate, pH 7 2.0M Ammonium Sulfate 2.0M ammonium sulfate, 50 mM Stock Solution sodium phosphate, pH 7 Phenyl-650 Equilibration 1.3M ammonium sulfate, 50 mM Buffer sodium phosphate, pH 7 Phenyl-650 Gradient Buffer 50
  • a 5.0 liter (20 cm diameter by 16 cm length) ProSep A affinity column was equilibrated with PBS (see Table 1) at 5.2 liter/min. 100 liters of conditioned culture medium containing 0.8 grams per liter of RSHZ-19 monoclonal antibody was clarified by microfiltration as described above, and applied to the column at a flow rate of 5.2 liter/min. After the load, approximately 15 liters of PBS/glycine was applied to the column at the same flow rate. The IgG was eluted by applying 15-20 liters of ProSep A elution buffer. Fractions of the non-bound peak and the elution peak were collected and assayed for IgG content using an HPLC assay. The eluate was approximately 15 liters in volume, and contained approximately 5 milligrams protein per milliliter.
  • the sample was adjusted to pH 3.5 by the addition of 2.5M hydrochloric acid, held for approximately 30 minutes, and adjusted to pH 5.5 by the addition of approximately 350 milliliters of 1M Tris base. After neutralizing to pH 5.5, the sample was filtered through a 0.1 micron Polygard CR filter in tandem with a sterile 0.2 micron Millipak 200, into a sterile container. The filtrate was stored at 4° C. Samples of the filtrate were analyzed for IgG content using an HPLC assay, and for total protein by absorbance at 280 nanometers. The samples were also analyzed for Protein A content by an ELISA procedure. This pH 3.5 treated and filtered Prosep A eluate was used as the CM SEPHAROSE load in Examples IA, B and C.
  • CM SEPHAROSE FF 400 milliliters of pH 3.5 treated and filtered ProSep A eluate were loaded directly onto a 220 milliliter (4.4 cm diameter ⁇ 15 cm length) column of CM SEPHAROSE FF at 38 mL/min, which had been previously equilibrated with CM Equilibration buffer. After loading, the column was washed at 38 mL/min with approximately 700 milliliters of CM Equilibration Buffer. The IgG was eluted by applying CM Elution Buffer at 38 mL/min. The IgG came of the column after approximately 1 bed volume of Elution Buffer had passed. The entire peak was collected as CM SEPHAROSE eluate.
  • CM non-bound, eluate and strip fractions Fractions of the CM non-bound, eluate and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously.
  • the eluate was approximately 160 milliliters in volume, and contained approximately 12 milligrams protein per milliter.
  • This CM SEPHAROSE eluate was split into two equal portions of approximately 80 milliliters, and was used in Examples IA and IB for the HIC load.
  • CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 40 milliliters of Guanidine Stock Solution. This brought the guanidine concentration to 2M for viral inactivation. While stirring the guanidine-treated solution, a total of 120 milliliters of 2.6M Ammonium Sulfate Stock Solution was added. The resulting solution was 1.0M in guanidine and 1.3M in ammonium sulfate. The ammonium sulfate treated solution was applied to an 80 mL column (3.2 cm diameter ⁇ 10 cm length) of TOYOPEARL Phenyl-650M, previously equilibrated with Phenyl Equilibration Buffer.
  • the flow rate was 20 mL/min throughout the run. After loading, the column was washed with approximately 350 milliliters of Phenyl Equilibration Buffer.
  • the IgG was eluted by applying a linear gradient starting at 85% Equilibration/15% Gradient buffer and ending at 0% Equilibration/100% Gradient buffer, in 18-19 column volumes. This represents a starting ammonium sulfate concentration of approximately 1.1M and an ending concentration of 0M.
  • the slope of this gradient was approximately a 4.7% increase in elution buffer per column volume, or ⁇ 0.061M ammonium sulfate per column volume.
  • the IgG began to elute from the column at approximately 7 column volumes and ended at approximately 13 column volumes into the gradient (ammonium sulfate concentration of approximately 0.7 to 0.3M). The eluted fraction was collected until the UV absorbance on the tailing side of the peak decreased to 20% of the peak height, then collection was switched to another vessel (tail fraction). At the end of the gradient, approximately 250 mL of HIC Strip Buffer was applied to regenerate the column. Fractions of the Phenyl non-bound, eluate, tail and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously. The eluate was approximately 300 milliliters in volume, and contained approximately 2.4 milligrams protein per milliter.
  • Table 2 summarizes the column parameters for this example.
  • the product and protein recovery data for each step are shown in Table 3, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg).
  • the Protein A reduction over Phenyl-650M is approximately 4-fold, and the recovery is approximately 94%.
  • This preparation used the same CM SEPHAROSE eluate as described in Example IA, and the HIC step was performed using TOYOPEARL Butyl-650M instead of Phenyl-650M.
  • the preparation of the CM SEPHAROSE eluate is described in Example IA above.
  • To 80 milliliters of CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 40 milliliters of Guanidine Stock Solution. This brought the guanidine concentration to 2M for viral inactivation.
  • a total of 120 milliliters of 2.0M Ammonium Sulfate Stock Solution was added.
  • the resulting solution was 1.0M in guanidine and 1.0M in ammonium sulfate.
  • the ammonium sulfate treated solution was applied to a an 80 mL column (3.2 cm diameter ⁇ 10 cm length) of TOYOPEARL Butyl-650M, previously equilibrated with Butyl Equilibration Buffer. The flow rate was 20 mL/min throughout the run. After loading, the column was washed with approximately 350 milliliters of Butyl Equilibration Buffer. The IgG was eluted by applying a linear gradient starting at 65% Equilibration/35% Gradient buffer and ending at 20% Equilibration/80% Gradient buffer, in 12-13 column volumes. This represents a starting ammonium sulfate concentration of approximately 0.65M and an ending concentration of approximately 0.2M.
  • the slope of this gradient was approximately a 3.3% increase in elution buffer per column volume, or ⁇ 0.033M ammonium sulfate per column volume.
  • the IgG began to elute from the column at approximately 2 column volumes and ended at approximately 9 column volumes into the gradient (ammonium sulfate concentration of approximately 0.58 to 0.35M).
  • the eluate fraction was collected until the UV absorbance on the tailing side of the peak decreased to 10% of the peak height, then collection was switched to another vessel.
  • approximately 250 mL of Butyl Gradient Buffer was applied, and a small peak eluted and was collected.
  • Approximately 250 mL of HIC Strip Buffer was applied to regenerate the column.
  • Fractions of the Butyl non-bound, eluate, tail and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously.
  • the eluate was approximately 400 milliliters in volume, and contained approximately 1.5 milligrams protein per milliter.
  • Table 4 summarizes the column parameters for this example.
  • the product and protein recovery data for each step are shown in Table 5, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg). Although the recovery of IgG is lower compared to Example IA (79% v. 94%), the Protein A content is reduced approximately 20-fold using Butyl-650M as an HIC step.
  • This preparation used the same ProSep A eluate as described in Example IA, and the downstream steps were scaled-up to accommodate approximately 40 grams of protein, using TOYOPEARL Phenyl-650M as the HIC medium.
  • the preparation of the CM SEPHAROSE Load is described in Example IA above. 7.8 liters of pH 3.5 treated and filtered ProSep A eluate were loaded directly onto a 4.2 liter (25 cm diameter ⁇ 8.5 cm length) column of CM SEPHAROSE FF which had been previously equilibrated with CM Equilibration buffer at 1.2 L/min. After loading, the column was washed at 1.2 L/min with approximately 8 liters of CM Equilibration Buffer.
  • the IgG was eluted by applying CM Elution Buffer at 1.2 L/min.
  • the IgG came off the column after approximately 1 bed volume of Elution Buffer had passed.
  • the entire peak was collected as CM SEPHAROSE eluate.
  • the column fractions of the CM non-bound and eluate were collected and analyzed for IgG content, total protein content, and Protein A content as described previously.
  • the eluate was approximately 5.7 liters in volume, and contained approximately 6-7 milligrams protein per milliter.
  • CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 2.8 liters of Guanidine Stock Solution (3.2 kilogram by weight). This brought the guanidine concentration to 2M for viral inactivation, at a volume of 8.3 liters.
  • a total of 8.3 liters (9.7 kg by weight) of 2.6M Ammonium Sulfate Stock Solution was added.
  • the resulting solution was 1.0M in guanidine and 1.3M in ammonium sulfate, with a final volume of 16.7 liters.
  • the ammonium sulfate treated solution was applied to a 4.6 liter column (18 cm diameter ⁇ 18 cm length) of TOYOPEARL Phenyl-650M, previously equilibrated with Phenyl Equilibration Buffer. The flow rate was 0.5-0.6 L/min throughout the run. After loading, the column was washed with approximately 14 liters of Phenyl Equilibration Buffer. The IgG was eluted by applying a linear gradient starting at 100% Equilibration Buffer and ending at 100% Gradient buffer, in 20 column volumes. This represents a starting ammonium sulfate concentration of approximately 1.3M and an ending concentration of 0M.
  • the slope of this gradient was approximately a 5% increase in elution buffer per column volume, or ⁇ 0.065M ammonium sulfate per column volume.
  • the IgG began eluting from the column at approximately 7 column volumes and ended at approximately 12 column volumes into the gradient (ammonium sulfate concentration of approximately 0.85 to 0.5M).
  • the eluate fraction was collected until the UV absorbance on the tailing side of the peak decreased to 20% of the peak height, then collection was switched to another vessel (tail).
  • Fractions of the Phenyl non-bound, eluate and tail and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously.
  • the eluate was approximately 15.4 L in volume, and contained approximately 2.2 milligrams protein per milliter.
  • the Phenyl Eluate was concentrated to approximately 16 mg/mL using a tangential flow ultrafiltration apparatus (CUF, Millipore Corp.) equipped with 30,000 MWCO Omega membranes (Filtron Corp.) and buffer exchanged by continuous diafiltration against a suitable formulation buffer.
  • CCF tangential flow ultrafiltration apparatus
  • Millipore Corp. equipped with 30,000 MWCO Omega membranes (Filtron Corp.) and buffer exchanged by continuous diafiltration against a suitable formulation buffer.
  • Table 6 summarizes the column parameters for this example.
  • the product and protein recovery data for each step are shown in Table 7, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg) and the IgG aggregate content, expressed as % of total IgG.
  • the Protein A reduction over Phenyl-650M is approximately 3-fold, and the recovery is approximately 90%.
  • IgG aggregates were reduced from 0.5% in the CM SEPHAROSE eluate to 0.06% in the formulated product.
  • Fractions of the non-bound peak and the elution peak were collected and assayed for IgG content using an HPLC assay.
  • the eluate from each cycle was approximately 9 liters in volume, and contained approximately 5-10 milligrams protein per milliliter.
  • the ProSep A eluates were adjusted to pH 3.5 by the addition of 2.5M hydrochloric acid, held for approximately 30 minutes, and adjusted to pH 5.5 by the addition of approximately 250 milliliters of 1M Tris base.
  • the eluates were pooled together, and filtered through a 0.1 micron Polygard CR filter in tandem with a sterile 0.2 micron Millipak 200, in 5 liter aliquots in sterile containers.
  • the filtrate was stored at 4° C. Samples of the filtrate were analyzed for IgG content using an HPLC assay, and for total protein by absorbance at 280 nanometers. The samples were also analyzed for Protein A content by an ELISA procedure, and IgG aggregates by HPLC.
  • CM SEPHAROSE eluate Fractions of the CM non-bound and eluate were collected and analyzed for IgG content, total protein content, and IgG aggregate.
  • the eluate was approximately 21 liters in volume, and contained approximately 120 grams protein.
  • CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 9.7 liters of Guanidine Stock Solution. This brought the guanidine concentration to 2M for viral inactivation, at a volume of 29.1 liters. While stirring the guanidine-treated solution, a total of 29.1 liters of 2.6M Ammonium Sulfate Stock Solution was added. The resulting solution was 1.0M in guanidine and 1.3M in ammonium sulfate, with a final volume of 58.2 liters.
  • the ammonium sulfate treated solution was applied to a 12.4 liter column (30 cm diameter ⁇ 18 cm length) of TOYOPEARL Phenyl-650M, previously equilibrated with Phenyl Equilibration Buffer.
  • the flow rate was 1.1-1.3 L/min throughout the run.
  • the column was washed with approximately 37 liters of Phenyl Equilibration Buffer.
  • the IgG was eluted by applying a linear gradient starting at 80% Equilibration Buffer/20% Gradient Buffer and ending at 20% Equilibration Buffer/80% Gradient buffer, in 12 column volumes. This represents a starting ammonium sulfate concentration of approximately 1.0M and an ending concentration of approximately 0.26M.
  • the slope of this gradient was approximately a 5% increase in Gradient buffer per column volume, or ⁇ 0.065M ammonium sulfate per column volume.
  • the IgG came off the column essentially in the middle of the gradient, with the peak containing approximately 0.8M ammonium sulfate.
  • the eluate fraction was collected until the UV absorbance on the tailing side of the peak decreased to 20% of the peak height, then collection was switched to another vessel (tail). Fractions of the Phenyl non-bound, eluate and tail and strip fractions were collected and analyzed for IgG content, total protein content, and IgG aggregate.
  • the eluate was approximately 29 L in volume, and contained approximately 100 grams protein.
  • the Phenyl Eluate was concentrated to approximately 10 mg/mL using a tangential flow ultrafiltration apparatus (CUF, Millipore Corp.) equipped with 30,000 MWCO Omega membranes (Filtron Corp.) and buffer exchanged by continuous diafiltration against a suitable formulation buffer.
  • the product was analyzed for IgG content, total protein, Protein A and IgG aggregate.
  • Table 8 summarizes the column parameters for this example.
  • the product and protein recovery data for each step are shown in Table 9, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg) and the IgG aggregate content, expressed as % of total IgG.
  • the Protein A reduction over CM SEPHAROSE and Phenyl-650M is approximately 7-fold, and the cumulative recovery is approximately 70%.
  • IgG aggregates were reduced from 0.4% in the CM SEPHAROSE eluate to 0.06% in the formulated product.
  • the anti-CD4 monoclonal antibody CH-CD14 was made by cell culture techniques and partially purified using Protein A and ion exchange chromatography in a fashion similar to that used in Example I, except that an anion exchange resin was employed.
  • An Amicon column (1 cm diameter by 10 cm high) was packed with 8 mL of Phenyl TOYOPEARL 650M resin (lot #65PHM01 H). The flow rate was maintained at 2 mL/min for all steps. The column was equilibrated with 20 mL Equilibration buffer (1M ammonium sulfate, 50 mM sodium phosphate, pH 7.0).
  • the product was prepared for loading on the column by taking 5 mL partially purified CH-CD4 monoclonal antibody (17 mg/mL concentration by absorbance at 280 nm), adding 2.5 mL 6M guanidine HCl, 50 mM sodium phosphate, pH 7.0, mixing, holding for 30 minutes, and then adding 7.5 mL 2M ammonium sulfate, 50 mM sodium phosphate, pH 7.0.
  • the final ammonium sulfate concentration of the load was 1M
  • the final guanidine HCl concentration was 1M
  • the final volume after samples were taken was 12 mL
  • the final concentration of product was 5.6 mg/mL.
  • CH-CD4 monoclonal antibody was partially purified, and prepared for loading on the HIC column as described in example IIA.
  • the same column, flowrate, equilibration and loading described in example IIA were used.
  • Equilibration buffer 1M ammonium sulfate, 50 mM sodium citrate, pH 3.5. This was followed by another washing with 13.5 mL Equilibration buffer (described in example IIA).
  • the column was eluted with a gradient and then washed with water as described in example IIA. The column eluate was divided into 14 mL fractions which were then analyzed for product and Protein A.
  • the column was equilibrated with 2 column volumes of Equilibration buffer and then loaded on the column.
  • the column was then washed with 630 mL of Equilibration buffer, 1,000 mL of Wash buffer, 800 mL of Equilibration buffer, and then eluted with a 5 column volume gradient from 0.75M ammonium sulfate, 50 mM sodium phosphate, pH 7.0, to 50 mM sodium phosphate, pH 7.0. Fractions were collected during elution.
  • Partially purified CH-CD4 monoclonal antibody was prepared as shown in example IIA. Equilibration and Wash buffers are described in example IIB. Four milliliters of 6M guanidine HCl, 50 mM sodium phosphate, pH 7.0 was added to 8 mL of a 9.5 mg/mL solution of partially purified CH-CD4 monoclonal antibody and incubated for 30 minutes. Then, 12 mL of 2M ammonium sulfate, 50 mM sodium phosphate, pH 7.0 was added slowly. The column was 0.5 cm in diameter and 20 cm high (4 mL) and the flowrate for all steps was 0.5 mL/min. The column was rinsed with 2 column volumes each of water and Equilibration buffer.

Abstract

This invention relates to the application of hydrophobic interaction chromatography combination chromatography to the purification of antibody molecule proteins.The questions raised in reexamination request, 09/006,966 filed Mar. 12, 2004 have been considered and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e), for ex parte reexaminations, or the reexamination certificate required by 35 U.S.C. 316 as provided in 37 CFR 1.997(e) for inter partes reexaminations.

Description

More than one reissue application has been filed for the reissue of Pat. No. 5,429,746. The reissue applications are application Ser. No. 11/140,525 (the present reissue) and 11/804,729 which is a continuation of the reissue application Ser. No. 11/140,525.
FIELD OF THE INVENTION
This invention relates to the field of protein purification. More specifically, this invention relates to the application of Hydrophobic Interaction Chromatography (HIC) to the separation of Immunoglobulin G monomers and to the integration of HIC into a combination chromatographic protocol for the purification of IgG antibody molecules.
BACKGROUND OF THE INVENTION
Historically, protein purification schemes have been predicated on differences in the molecular properties of size, charge and solubility between the protein to be purified and undesired protein contaminants. Protocols based on these parameters include size exclusion chromatography, ion exchange chromatography, differential precipitation and the like.
Size exclusion chromatography, otherwise known as gel filtration or gel permeation chromatography, relies on the penetration of macromolecules in a mobile phase into the pores of stationary phase particles. Differential penetration is a function of the hydrodynamic volume of the particles. Accordingly, under ideal conditions the larger molecules are excluded from the interior of the particles while the smaller molecules are accessible to this volume and the order of elution can be predicted by the size of the protein because a linear relationship exists between elution volume and the log of the molecular weight.
Chromatographic supports based on cross-linked dextrans e.g. SEPHADEX®, spherical agarose beads e.g. SEPHAROSE® (both commercially available from Pharmacia AB. Uppsala, Sweden), based on cross-linked polyacrylamides e.g. BIO-GEL ® (commercially available from BioRad Laboratories, Richmond, Calif.) or based on ethylene glycol-methacrylate copolymer e.g. TOYOPEARL HW65 (commercially available from Toso Haas Co., Tokyo, Japan) are useful in forming the various chromatographic columns for size exclusion, or HIC chromatography in the practice of certain aspects of this invention.
Precipitation methods are predicated on the fact that in crude mixtures of proteins the solubilities of individual proteins are likely to vary widely. Although the solubility of a protein in an aqueous medium depends on a variety of factors, for purposes of this discussion it can be said generally that a protein will be soluble if its interaction with the solvent is stronger than its interaction with protein molecules of the same or similar kind. Without wishing to be bound by any particular mechanistic theory describing precipitation phenomena, it is nonetheless believed that interaction between a protein and water molecules can occur by hydrogen bonding with several types of uncharged groups and/or electrostatically, as dipoles, with charged groups and that precipitants such as salts of monovalent cations (e.g. ammonium sulfate) compete with proteins for water molecules. Thus at high salt concentrations, the proteins become “dehydrated” reducing their interaction with the aqueous environment and increasing the aggregation with like or similar proteins, resulting in precipitation from the medium.
Ion exchange chromatography involves the interaction of charged functional groups in the sample with ionic functional groups of opposite charge on an adsorbent surface. Two general types of interaction are known. Anionic exchange chromatography is mediated by negatively charged amino acid side chains (e.g., aspartic acid and glutamic acid) interacting with positively charged surfaces and cationic exchange chromatography is mediated by positively charged amino acid residues (e.g., lysine and arginine) interacting with negatively charged surfaces.
More recently affinity chromatography and hydrophobic interaction chromatography techniques have been developed to supplement the more traditional size exclusion and ion exchange-chromatographic protocols. Affinity chromatography relies on the specific interaction of the protein with an immobilized ligand. The ligand can be specific for the particular protein of interest in which case the ligand is a substrate, substrate analog, inhibitor, receptor or antibody. Alternatively, the ligand may be able to react with a number of related proteins. Such group specific ligands as adenosine monophosphate, adenosine diphosphate, nicotine adenine dinucleotide or certain dyes may be employed to recover a particular class of proteins.
With respect to the purification of antibody molecules, both specific and generalized affinity techniques are applicable. The most specific choice of ligand for the affinity purification of an antibody is the antigen (or an epitope thereof) to which desired antibody reacts. Many of the well-known immunosorbent assays such as the enzyme-linked immunosorbent assays (ELISA) are predicated on such specific antigen/antibody affinity interactions.
However, generalized affinity techniques are also useful. For example, Staphylococcal Protein A is known to bind certain antibodies of the IgG class (See: Ey, P. L. et al. Immunochemistry 15:429-36 (1978)). Alternatively, antisera raised in heterologous species (e.g. rabbit anti-mouse antisera) can be used to separate general groups of antibodies. (See, Current Protocols in Molecular Biology Supra, Chap 11.)
Hydrophobic interaction chromatography was first developed following the observation that proteins could be retained on affinity gels which comprised hydrocarbon spacer arms but lacked the affinity ligand. Although in this field the term hydrophobic chromatography is sometimes used, the term hydrophobic interaction chromatography (HIC) is preferred because it is the interaction between the solute and the gel that is hydrophobic not the chromatographic procedure. Hydrophobic interactions are strongest at high ionic strength, therefore, this form of separation is conveniently performed following salt precipitations or ion exchange procedures. Elution from HIC supports can be effected by alterations in solvent, pH, ionic strength, or by the addition of chaotropic agents or organic modifiers, such as ethylene or propylene glycol. A description of the general principles of hydrophobic interaction chromatography can be found in U.S. Pat. No. 3,917,527 and in U.S. Pat. No. 4,000,098. The application of HIC to the purification of specific proteins is exemplified by reference to the following disclosures: human growth hormone (U.S. Pat. No. 4,332,717), toxin conjugates (U.S. Pat. No. 4,771,128), antihemolytic factor (U.S. Pat. No. 4,743,680), tumor necrosis factor (U.S. Pat. No. 4,894,439), interleukin-2(U.S. Pat. No. 4,908,434), human lymphotoxin (U.S. Pat. No. 4,920,196) and lysozyme species (Fausnaugh, J. L. and F. E. Regnier, J. Chromatog. 359:131-146 (1986)) and soluble complement receptors (U.S. Pat. No. 5,252,216). HIC in the context of high performance liquid chromatography (HPLC) has been used to separate antibody fragmens (e.g., F(ab′)2) from intact antibody molecules in a single step protocol. (Morimoto, K. et al., J. Biochem. Biophys. Meth. 24:107-117 (1992)).
In addition to affinity and HIC techniques, one or more of the traditional protein purification schemes have been applied to antibody purification. For example, Hakalahti, L. et al., (J. Immunol. Meth. 117:131-136 (1989)) disclose a protocol employing two successive ion exchange chromatographic steps or one employing a single ion exchange step followed by a HIC step. Danielsson A. et al. (J. Immunol. Methods 115:79-88 (1988)) compare single step protocols based on anion exchange, cation exchange, chromatofocusing and HIC respectively.
Although Protein A affinity column chromatography is widely used, it is also appreciated that elution of antibody from such columns can result in leaching of residual Protein A from the support. Size exclusion HPLC (Das et al., Analytical Biochem, 145:27-36 (1985)) and anion exchange chromatography (EPO345549, published Dec. 13, 1989) have been suggested as means for dealing with this problem.
It has now been surprisingly discovered that HIC can be usefully employed to remove contaminating Protein A from IgG mixtures eluted from Protein A chromatographic support.
This invention relates to the application of HIC to the separation of monomeric IgG from mixtures containing same and to the integration of HIC into a protocol combining Protein A and ion exchange chromatography for the purification of immunoglobulin G molecules.
BRIEF DESCRIPTION OF THE INVENTION
This invention relates to a method for separating IgG monomers from aggregates in mixtures containing same by contacting said mixture with a hydrophobic interaction chromatographic support and selectively eluting the monomer from the support.
In another aspect the invention provides for the purification of an IgG antibody from conditioned cell culture medium containing same comprising sequentially subjecting the medium to (a) Protein A, (b) ion exchange chromatography, and (c) hydrophobic interaction chromatography.
In another aspect the invention provides a method for removing Protein A from a mixture comprising Protein A and antibodies comprising contacting said mixture with a hydrophobic interaction chromatography support and selectively eluting the antibody from the support.
DETAILED DESCRIPTION OF THE FIGURES
FIG. 1 illustrates a flow diagram of one process for purifying an antibody according to this invention.
DETAILED DESCRIPTION OF THE INVENTION
This invention relates to protein purification techniques which have application to the large scale purification of immunoglobulin molecules. The invention is particularly useful because it permits the recovery of monomeric IgG of >95% protein purity. The invention may be applied to the purification of a number of different immunoglobulin G molecules.
Antibody-like proteins are proteins which may be purified by the protocol described herein, such protocol being modified if necessary by routine, non-inventive adjustments that do not entail undue experimentation. Such proteins include isotypes. allotypes and alleles of immunoglobulin genes, truncated forms, altered antibodies, such as chimeric antibodies, humanized antibodies and the like, chemically modified forms such as by PEG treatment, and fusion proteins containing an immunoglobulin moiety. These proteins are referred to as antibody-like because they possess or retain sufficient immunoglobulin protein properties (e.g. Fc determinants) to admit to purification by the process of this invention. Unless specifically identified otherwise, the term antibody or immunoglobulin protein also includes antibody-like proteins.
The immunoglobulin molecules of this invention can be isolated from a number of sources, including without limitation, serum of immunized animals, ascites fluid, hybridoma or myeloma supernatants, conditioned media derived from culturing a recombinant cell line that expresses the immunoglobulin molecule and from all cell extracts of immunoglobulin producing cells. This invention is particularly useful for the purification of antibodies from conditioned cell culture media of a variety of antibody producing recombinant cell lines. Although one may expect some variation from cell line to cell line and among the various antibody products, based on the disclosure herein, it is well within the purview of one of ordinary skill in this an to adapt the invention herein to a particular combination of antibody protein and producing cell line.
Generally, genes encoding proteins such as antibodies may be cloned by incorporating DNA sequences coding for the desired regions of the polypeptide into a recombinant DNA vehicle (e.g., vector) and transforming or transfecting suitable prokaryotic or eukaryotic hosts. Suitable prokaryotic hosts include but are not limited to Escherichia, Streptomyces, Bacillus and the like. Suitable eukaryotic hosts include but are not limited to yeast, such as Saccharomyces and animal cells in culture such as VERO, HeLa, mouse C127, Chinese hamster ovary (CHO), WI-38, BHK, COS, MDCK, myeloma, and insect cell lines. Particularly preferred hosts are CHO cell lines deficient in dihydrofolate reductase such as ATCC CRL 1793, CRL 9096 and other cell lines described herein below. Such recombinant techniques have now become well known and are described in Methods in Enzymology, (Academic Press) Volumes 65 and 69 (1979), 100 and 101 (1983), and the references cited therein. An extensive technical discussion embodying most commonly used recombinant DNA methodologies can be found in Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory (1982) or Current Protocols in Molecular Biology, Greene Publishing, Wiley Interscience (1988,1991,1993).
One way of obtaining a DNA fragment encoding a desired polypeptide such as an antibody molecule is via cDNA cloning. In this process, messenger RNA (mRNA) is isolated from cells known or suspected of producing the desired protein. Through a series of enzymatic reactions, the mRNA population of the cells is copied into a complementary DNA (cDNA). The resulting cDNA is then inserted into cloning vehicles and subsequently used to transform a suitable prokaryotic or eukaryotic host. The resulting cDNA “library” is comprised of a population of transformed host cells, each of which contain a single gene or gene fragment. The entire library, in theory, provides a representation sample of the coding information present in the mRNA mixture used as the starting material. The libraries can be screened using nucleic acid or antibody probes in order to identify specific DNA sequences. Once isolated, these DNA sequences can be modified or can be assembled into complete genes.
Specific fragments of an antibody gene can be engineered independently of the rest of the gene. DNA fragments encoding Complementarity Determining Regions (CDRs) can be integrated into DNA framework sequences from heterologous species to yield altered antibodies. These altered antibodies have significant utility in the treatment of undesirable physiological conditions. For example, PCT/GB91/01554 (published as WO92/04381) discloses the production of “humanized” antibodies useful for the treatment and prevention of Respiratory Syncytial Virus (RSV) infection. Alternatively, the entire variable region of antibody gene can be fused to the constant domain of a second antibody to form an altered antibody otherwise known as a “chimeric antibody”. For example, PCT/US92/06194 (published as WO93/02108) discloses a monkey/human chimeric antibody reactive with the human CD4 receptor.
Once the antibody gene or gene fragment has been cloned, the DNA may be introduced into an expression vector and that construction used to transform an appropriate host cell. An expression vector is characterized as having expression control sequences as defined herein, such that when a DNA sequence of interest is operably linked thereto, the vector is capable of directing the production of the product encoded by the DNA sequence of interest in a host cell containing the vector. With specific reference to this invention, it is possible to assemble fragments of a single coding sequence such that upon expression an antibody molecule is formed. A particularly efficacious application of this protocol to recombinant antibody production is found in the Harris, et al. PCT Applications WO92/04381, published Mar. 19, 1992, cited above, and in the Newman et al. PCT Application WO93/02108, published Feb. 4, 1993, cited above.
After the recombinant product is produced it is desirable to recover the product. If the product is exported by the cell producing it, the product can be recovered directly from the cell culture medium. If the product is retained intracellularly, the cells must be physically disrupted by mechanical, chemical or biological means in order to obtain the intracellular product.
In the case of a protein product, the purification protocol should not only provide a protein product that is essentially free of other proteins, by which is meant at least 80% and preferably greater than 95% pure with respect to total protein in the preparation, but also eliminate or reduce to acceptable levels other host cell contaminants, DNA, RNA, potential pyrogens and the like. Furthermore, in the context of antibody production by recombinant expression system, it is appreciated that aggregation of the 150,000 dalton IgG product into higher molecular weight species can occur. Accordingly, for purposes of product purity and standardization it is also useful to separate the native 150,000 dalton monomeric species from higher molecular weight aggregates and other misfolded forms. While it is appreciated that the 150,000 dalton IgG species is composed of four polypeptide chains (2 heavy chains and 2 light chains), the 150,000 dalton species is referred to herein as a “monomer” or “monomeric IgG”.
As mentioned above, a variety of host cells may be used for the production of the antibodies of this invention. The choice of a particular host cell is well within the purview of the ordinary skilled artisan taking into account, inter alia, the nature of the antibody, its rate of synthesis, its rate of decay and the characteristics of the recombinant vector directing the expression of the antibody. The choice of the host cell expression system dictates to a large extent the nature of the cell culture procedures to be employed. The selection of a particular mode of production, be it batch or continuous, spinner or air lift, liquid or immobilized can be made once the expression system has been selected. Accordingly, fluidized bed bioreactors, hollow fiber bioreactors, roller bottle cultures, or stirred tank bioreactors, with or without cell microcarriers may variously be employed. The criteria for such selection are appreciated in the cell culture art. They are not detailed herein because they are outside the scope of this invention. This invention relates to the purification of antibodies given their existence in a conditioned cell culture medium, hybridoma supernatant, antiserum, myeloma supernatant or ascites fluid.
As mentioned above this invention relates, inter alia, to application of hydrophobic interaction chromatography (HIC) to the separation and purification of antibody molecules. Hydrophobic molecules in an aqueous solvent will self-associate. This association is due to hydrophobic interactions. It is now appreciated that macromolecules such as proteins have on their surface extensive hydrophobic patches in addition to the expected hydrophilic groups. HIC is predicated, in part, on the interaction of these patches with hydrophobic ligands attached to chromatographic supports. A hydrophobic ligand coupled to a matrix is variously referred to herein as an HIC support, HIC gel or HIC column. It is further appreciated that the strength of the interaction between the protein and the HIC support is not only a function of the proportion of non-polar to polar surfaces on the protein but by the distribution of the non-polar surfaces as well and the chemistry of the HIC support.
A number of chromatographic supports may be employed in the preparation of HIC columns, the most extensively used are agarose, silica and organic polymer or co-polymer resins. Useful hydrophobic ligands include but are not limited to alkyl groups having from about 2 to about 8 carbon atoms, such as a butyl, propyl, or octyl; or aryl groups such as phenyl. Conventional HIC products for gels and columns may be obtained commercially from suppliers such as Pharmacia LKB AB, Uppsala, Sweden under the product names butyl-SEPHAROSE®, phenyl or butyl-SEPHAROSE® CL-4B, butyl-SEPHAROSE® FF, octyl-SEPHAROSE® FF and phenyl-SEPHAROSE® FF; Tosoh Corporation, Tokyo, Japan under the product names TOYOPEARL ether 650, phenyl 650 or butyl 650 (Fractogel); Miles-Yeda, Rehovot, Israel under the product name alkyl-agarose, wherein the alkyl group contains from 2-10 carbon atoms, and J. T. Baker, Phillipsburg, N.J. under the product name Bakerbond WP-HI-propyl.
It is also possible to prepare the desired HIC column using conventional chemistry. (See: for example, Er-el. Z. et al. Biochem. Biophys. Res. Comm. 49:383 (1972) or Ulbrich, V. et al. Coll. Czech. Chem. Commun. 9:1466 (1964)).
Ligand density is an important parameter in that it influences not only the strength of the interaction but the capacity of the column as well. The ligand density of the commercially available phenyl or octyl phenyl gels is on the order of 40 μmoles/ml gel bed. Gel capacity is a function of the particular protein in question as well as pH, temperature and salt type and concentration but generally can be expected to fall in the range of 3-20 mg/ml of gel.
The choice of a particular gel can be determined by the skilled artisan. In general the strength of the interaction of the protein and the HIC ligand increases with the chain length of the alkyl ligands but ligands having from about 4 to about 8 carbon atoms are suitable for most separations. A phenyl group has about the same hydrophobicity as a pentyl group, although the selectivity can be quite different owing to the possibility of pi-pi orbital interaction with aromatic groups on the protein. Selectively may also be affected by the chemistry of the supporting resin.
Adsorption of the proteins to a HIC column is favored by high salt concentrations, but the actual concentrations can vary over a wide range depending on the nature of the protein and the particular HIC ligand chosen. Various ions can be arranged in a so-called soluphobic series depending on whether they promote hydrophobic interactions (salting-out effects) or disrupt the structure of water (chaotropic effect) and lead to the weakening of the hydrophobic interactions. Cations are ranked in terms of increasing salting out effect as Ba++<Ca++<Mg++<Li+<Ca+<Na+<K+<R-b+<NH4+, while anions may be ranked in terms of increasing chaotropic effect as PO4—<SO4—<CH3COO-<Cl-<Br-<NO3-<ClO4-<I-<SCN-. Accordingly, salts may be formulated that influence the strength of the interaction as given by the following relationship:
(NH4)2SO4>Na2SO4>NaCl>NH4Cl>NaBr->NaSCN
In general, salt concentrations of between about 0.75 and about 2M ammonium sulfate or between about 1 and 4M NaCl are useful.
The influence of temperature on HIC separations is not simple, although generally a decrease in temperature decreases the interaction. However, any benefit that would accrue by increasing the temperature must also be weighed against adverse effects such an increase may have on the stability of the protein.
Elution, whether stepwise or in the form of a gradient, can be accomplished in a variety of ways: (a) by changing the salt concentration, (b) by changing the polarity of the solvent or (c) by adding detergents. By decreasing salt concentration adsorbed proteins are eluted in order of increasing hydrophobicity. Changes in polarity may be affected by additions of solvents such as ethylene or propylene glycol or (iso)propanol, thereby decreasing the strength of the hydrophobic interactions. Detergents function as displacers of proteins and have been used primarily in connection with the purification of membrane proteins.
Although it has been discovered that HIC chromatography can be used alone to separate monomeric IgG (MW 150,000) from aggregates and misfolded species, as mentioned above, HIC is particularly useful when used in combination with other protein purification techniques. That is to say, it is preferred to apply HIC to mixtures that have been partially purified by other protein purification procedures. By the term “partially purified” is meant a protein preparation in which the protein of interest is present in at least 5 percent by weight, more preferably at least 10% and most preferably at least 45%. By the term “mixture” is meant the desired monomeric IgG antibody molecule in combination with undesirable contaminants such as, without limitation, one or more of: immunoglobulin aggregates, misfolded species, host cell protein, residue material from preceding chromatographic steps such as Protein A when employed. Accordingly, the application of HIC can also be appreciated in the context of an overall purification protocol for immunoglobulin proteins such as affinity purified monoclonal antibodies. It has been found to be useful, for example, to subject a sample of conditioned cell culture medium to partial purification prior to the application of HIC. By the term “conditioned cell culture medium” is meant a cell culture medium which has supported cell growth and/or cell maintenance and contains secreted product. A sample of such medium is subjected to one or more protein purification steps prior to the application of a HIC step. The sample may be subjected to affinity chromatography employing Staphylococcus Protein A as a first step. For example, PROSEP-A® (BioProcessing Ltd., U.K.) which consists of Protein A covalently coupled to controlled pore glass can be usefully employed. Other useful Protein A formulations are Protein A SEPHAROSE® Fast Flow (Pharmacia) and TOYOPEARL 650M Protein A (TosoHaas). As a second step, ion exchange chromatography may be employed. In this regard various anionic or cationic substituents may be attached to matrices in order to form anionic or cationic supports for chromatography. Anionic exchange substituents include diethylaminoethyl(DEAE), quaternary aminoethyl(QAE) and quaternary amine(Q) groups. Cationic exchange substituents include carboxymethyl (CM), sulfoethyl(SE), sulfopropyl(SP), phosphate(P) and sulfonate(S). Cellulosic ion exchange resins such as DE23, DE32, DE52, CM-23, CM-32 and CM-52 are available from Whatman Ltd. Maidstone, Kent, U.K. SEPHADEX®-based and cross-linked ion exchangers are also known. For example, DEAE-, QAE-, CM-, and SP-SEPHADEX® and DEAE-, Q-, CM-and S-SEPHAROSE® and SEPHAROSE® Fast Flow are all available from Pharmacia AB. Further, both DEAE and CM derivitized ethylene glycol-methacrylate copolymer such as TOYOPEARL DEAE-650S or M and TOYOPEARL CM-650S or M are available from Toso Haas Co., Philadelphia, Pa. Because elution from ion exchange supports usually involves addition of salt and because, as mentioned previously, HIC is enhanced under increased salt concentrations, the introduction of a HIC step following an ionic exchange chromatographic step or other salt mediated purification step is particularly preferred. Additional purification protocols may be added including but not necessarily limited to further ionic exchange chromatography, size exclusion chromatography, viral inactivation, concentration and freeze drying.
For purposes of illustration only, this invention was applied to the purification of several antibodies of the IgG isotype. More specifically, to a humanized antibody useful for the treatment of RSV infection described by Harris et al.; 1992, Intl. Patent Publication Number WO/92/04381, published Mar. 19, 1992 (hereinafter “RSHZ-19”) and a chimeric antibody specifically reactive with the CD4 antigen described by Newman et al. Int'l Patent Publication Number WO93/02108, published Feb. 4, 1993 (hereinafter CH-CD4). The construction of recombinant systems for the production of RSHZ-19 and the CH-CD4 chimeric antibodies are detailed in the above mentioned PCT Applications, the contents of which are incorporated herein by reference for purpose of background and are summarized as follows.
An expression plasmid containing the RSHZ-19 coding sequence was cotransfected with pSV2dhfr into a dhfr-requiring Chinese Hamster Ovary cell line (CHO-DUXBII). The transfection was carried in growth medium and employed the calcium coprecipitation/glycerol shock procedure as described in: DNA Cloning, D. M. Glover ed. (Chap. 15, C. Gorman). Following transfection, the cells were maintained in growth medium for 46 hours under growth conditions (as described above) prior to the selection procedure.
The selection and co-amplification procedure was carried out essentially as described by R. J. Kaufman, et al. (Mol. Cell. Biol. 5:1750-1759 (1985)). Forty-six hours post transfection the cells were changed to selective medium MEM ALPHA (041-02571), 1% stock glutamine, 1% stock pen/strep (043-05070) and dialyzed bovine fetal calf serum (220-6300AJ) (Gibco, Paisley, Scotland). The cells were maintained in the selective medium for 8-10 days until dhfr+ colonies appeared. When the colonies were established the cells were changed into a selective medium containing methotrexate (A6770, Sigma Chem. Co., St. Louis, Mo.). The methotrexate concentration was initially 0.02 μM and was increased stepwise to 5 μM. During the amplification procedure aliquots of growth medium from growing cells were assayed for RSHZ-19 production by human IgG. Any antibody secreting recombinant cell line may be used to supply the conditioned medium for purification according to this invention, a particular cell line certainly is not required.
A transfected CHO cell line capable of producing RSHZ-19 can be cultured by a variety of cell culture techniques. For the application of this invention the particular method of culturing is not critical.
As mentioned previously, the particular recombinant production system and the particular cell culturing protocol is outside the scope of this invention. The system and protocol discussed above are representative of the many options available to the skilled artisan and they are included herein for purposes of illustration only. The purification protocol which is the subject of this invention is applicable, with only routine modification, to a variety of recombinant antibodies and antibody-like proteins regardless of how they are produced or cultured. For example a chimeric monoclonal antibody to CD4 was also purified by the process of this invention.
The purified antibodies obtained by practicing the process of this invention have the following properties: 1) greater than 97% antibody protein by weight; 2) stable to proteolytic degradation at 4° C. for at least three months; 3) low (<0.1 E.U./mg protein) endotoxin; 4) low (<1 pg/mg protein) DNA; 5) non-antibody protein <5% by weight; and 6) virally inactive. The following examples further illustrate this invention but are not offered by way of limitation of the claims herein.
EXAMPLE 1 INTRODUCTION
The procedure outlined below was developed for the isolation and purification of a monoclonal antibody against Respiratory Syncytial Virus (RSV). This antibody is a “humanized” IgG expressed in CHO cells, and grown in a stirred tank bioreactor. The antibody is more fully described in PCT WO92/04381 and is otherwise referred to herein as RSHZ 19. The process is designed to prepare RSHZ-19 of >95% purity while removing contaminants derived from the host cell, cell culture medium, or other raw materials. The process in its most preferred embodiment consists of three purification steps (Protein A affinity, cation exchange, and hydrophobic interaction chromatography), two viral inactivation steps, and a diafiltration step to exchange the product into a final buffer of choice (outlined in FIG. 1). All steps are carried out at room temperature (18°-25° C.). All buffers are prepared with WFI and filtered through either a 0.2 micron filter or a 10,000 MWCO membrane before use. Buffer formulations are listed in Table 1. Tables 2, 4, 6 and 8 show the column parameters for examples IA, IB, IC and ID respectively. Tables 3, 5 and 7 and 9 provide a purification summary for examples IA, IB, IC and ID respectively.
The first step in the process (Protein A affinity chromatography on ProSep A) can be rapidly cycled to accommodate varying amounts of cell-free culture fluid (CCF), and has a capacity of approximately 15 grams RSHZ-19 per liter of ProSep A. For example, 500 liters CCF containing 400-500 grams of IgG can be processed in 5 or 6 cycles. The downstream steps of the process (Cation Exchange Chromatography (CEC) and Hydrophobic Interaction Chromatography (HIC) are scaled to accommodate approximately 130-140 grams RSHZ-19 per cycle. Thus, a 500 liter culture containing 400-500 grams of RSHZ-19 is processed in three downstream cycles after capture on ProSep A.
The hydrophobic interaction chromatography step (HIC) has been demonstrated to remove residual Protein A that leaches from the Protein A column during elution (See: examples IA-D). In addition, aggregates of IgG can be removed over HIC, as shown in examples IC and ID.
The process description is normalized for any scale; linear flow rates listed are independent of column diameter, loading ratios are in mass per unit column volume. Examples are provided for the operation and the recovery at 1 gram, 40 gram, and 125 gram scales. (Examples IA-ID).
Purification Process Description
Removal of Cells from Culture
To harvest the culture fluid, the cells are removed using a tangential-flow microfiltration device (Prostak) equipped with a 0.65 micron filter or equivalent. The product is recovered in the permeate. For small volume cultures, centrifugation can be used.
Affinity Capture by Protein A Chromatography
The IgG is recovered from the CCF by adsorption chromatography on a column of ProSep A (BioProcessing Ltd.) previously equilibrated with PBS. The medium is applied to the column at a flow rate up to 1000 cm/hr at a load ratio of up to 15 grams IgG per liter column volume. After loading the column, it is washed with at least 3 column volumes of PBS containing 0.1 M glycine. The RSHZ-19 is eluted with a low pH buffer by applying approximately 3 column volumes of Elution Buffer.
The Protein A chromatography removes a large proportion of cell and media derived impurities (particularly protein and DNA in the flow-through and wash fractions), and concentrations RSHZ- 19 in the elution buffer for further processing.
Viral Inactivation at Acid pH (Optional)
The Protein A column eluate is collected and adjusted to pH 3.5 by the addition of 2.5M HCl. The solution is transferred to a second vessel and held at pH 3.5 for at least thirty minutes to provide viral inactivation, and readjusted to pH 5.5 by the addition of Tris buffer. The resulting solution is filtered through a prefilter (Millipore Polygard or equivalent) and a sterilized 0.2 μm filter (Millipore Millipak or equivalent), and held in sterile containers at 4° C., or frozen and held at −70° C.
The pH 3.5 treatment provides viral inactivation, and the pH 5.5 adjustment prepares the solution for cation exchange chromatography (CEC). The pH 3.5 treatment can be omitted if desired.
Cation Exchange Chromatography
The pH inactivated Protein A eluate is further purified by CEC chromatography on column of CM SEPHAROSE FF (Pharmacia LKB). The sample is applied to the equilibrated column at a flow rate of 150 cm/hr and a load ratio of ≦20 grams protein per liter CM SEPHAROSE. After loading, the column is washed with 3 to 5 column volumes of Equilibration Buffer. The product is eluted with 3-5 column volumes of Elution Buffer.
The cation exchange chromatography step removes protein and non-protein impurities.
Viral Inactivation with Guanidine
The cation exchange eluate is adjusted to approximately 2.0M guanidine hydrochloride by the slow addition (with mixing) of one-half volume of Guanidine Stock Solution. The rate of reagent addition is adjusted so that it is added over a 5-15 minute period. The solution is transferred to a second vessel, and is held for thirty minutes to achieve viral inactivation. After holding, an equal volume of Ammonium Sulfate Stock Solution is slowly added (with mixing), and the hydrophobic interaction chromatography (HIC) step is performed immediately. The rate of reagent addition is adjusted so that it is added over a 5-15 minute period.
The guanidine treatment provides a second viral inactivation step, when an acid inactivation step is employed, and keeps the RSHZ-19 soluble after ammonium sulfate addition; the addition of ammonium sulfate serves to dilute the guanidine and prepare the solution for HIC.
Hydrophobic Interaction Chromatography
The guanidine-treated solution is further purified by application to an HIC column consisting of TOYOPEARL Phenyl-650M previously equilibrated with Equilibration Buffer. The guanidine-treated solution is applied to the column at a flow rate of 150 cm/hr and a load ratio of ≦20 grams protein per liter Phenyl-650M. After loading, the column is washed with 3 to 5 column volumes of Equilibration Buffer. A linear gradient of decreasing ammonium sulfate is applied at a flow rate of 100-150 cm/hr, and the RSHZ-19 elutes as one major peak with impurities eluting later in the gradient. The slope of the gradient is approximately 20 column volumes, starting at 100% Equilibration Buffer and ending at 100% Gradient Buffer (1.3 to 0M ammonium sulfate). The peak is collected until the absorbance decreases to 20% of the maximum peak absorbance, then collection of the product fraction is ended. After the gradient ends, the column is washed with approximately 3 column volumes of Strip Buffer.
The HIC chromatography step removes additional protein and non-protein impurities, most notably residual Protein A, IgG aggregates, and host DNA.
Concentration, Diafiltration and Final Filtration
The HIC elute is concentrated to approximately 10 milligram per milliliter using a tangential-flow ultrafiltration device (such as a Millipore CUF) outfitted with a 30,000 molecular weight cut-off filter, diafiltered into a suitable formulation buffer and filtered through a sterilized 0.2 micron filter (Millipore Millipak or equivalent) into sterilized containers.
In-Process Assays
Process intermediates are assayed for total protein concentration by OD280 or Bradford assay, RSHZ-19 concentration by HLPC, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Aggregated product is assessed by size exclusion HPLC on TSK3000 SWXL, and Protein A residue is assayed using an ELISA.
Pooling Criteria
The eluate fractions from the Protein A capture and cation exchange steps are pooled based on the UV tracing on the chromatogram, and the entire peak is collected. The eluate from the HIC step is pooled based on the UV tracing, and the main peak is pooled until the UV reading on the tailing side of the peak reaches 20% of the peak maximum. The HIC tail fraction contains the majority of the Protein A and aggregated IgG's.
TABLE 1
Buffer Formulations
Buffer Name Composition
PBS
20 mM sodium phosphate,
150 mM sodium chloride, pH 7
PBS/glycine PBS plus 0.1M glycine
ProSep Elution Buffer 25 mM citrate, pH 3.5
CM SEPHAROSE 10 mM citrate, pH 5.5
Equilibration Buffer
CM SEPHAROSE 40 mM citrate, 100 mM
Elution Buffer sodium chloride, pH 6
Guanidine Stock Solution 6M guanidine hydrochloride,
50 mM sodium phosphate, pH 7
2.6M Ammonium Sulfate 2.6M ammonium sulfate, 50 mM
Stock Solution sodium phosphate, pH 7
2.0M Ammonium Sulfate 2.0M ammonium sulfate, 50 mM
Stock Solution sodium phosphate, pH 7
Phenyl-650 Equilibration 1.3M ammonium sulfate, 50 mM
Buffer sodium phosphate, pH 7
Phenyl-650 Gradient Buffer 50 mM sodium phosphate, pH 7
Butyl-650 Equilibration Buffer 1.0M ammonium sulfate, 50 mM
sodium phosphate, pH 7
Butyl-650 Gradient Buffer 50 mM sodium phosphate, pH 7
HIC Strip Buffer 0.2M NaOH

Example IA. RSHZ-19 Purification at 1 Gram Scale Using TOYOPEARL Phenyl-650M
A 5.0 liter (20 cm diameter by 16 cm length) ProSep A affinity column was equilibrated with PBS (see Table 1) at 5.2 liter/min. 100 liters of conditioned culture medium containing 0.8 grams per liter of RSHZ-19 monoclonal antibody was clarified by microfiltration as described above, and applied to the column at a flow rate of 5.2 liter/min. After the load, approximately 15 liters of PBS/glycine was applied to the column at the same flow rate. The IgG was eluted by applying 15-20 liters of ProSep A elution buffer. Fractions of the non-bound peak and the elution peak were collected and assayed for IgG content using an HPLC assay. The eluate was approximately 15 liters in volume, and contained approximately 5 milligrams protein per milliliter.
Immediately after elution, the sample was adjusted to pH 3.5 by the addition of 2.5M hydrochloric acid, held for approximately 30 minutes, and adjusted to pH 5.5 by the addition of approximately 350 milliliters of 1M Tris base. After neutralizing to pH 5.5, the sample was filtered through a 0.1 micron Polygard CR filter in tandem with a sterile 0.2 micron Millipak 200, into a sterile container. The filtrate was stored at 4° C. Samples of the filtrate were analyzed for IgG content using an HPLC assay, and for total protein by absorbance at 280 nanometers. The samples were also analyzed for Protein A content by an ELISA procedure. This pH 3.5 treated and filtered Prosep A eluate was used as the CM SEPHAROSE load in Examples IA, B and C.
400 milliliters of pH 3.5 treated and filtered ProSep A eluate were loaded directly onto a 220 milliliter (4.4 cm diameter × 15 cm length) column of CM SEPHAROSE FF at 38 mL/min, which had been previously equilibrated with CM Equilibration buffer. After loading, the column was washed at 38 mL/min with approximately 700 milliliters of CM Equilibration Buffer. The IgG was eluted by applying CM Elution Buffer at 38 mL/min. The IgG came of the column after approximately 1 bed volume of Elution Buffer had passed. The entire peak was collected as CM SEPHAROSE eluate. Fractions of the CM non-bound, eluate and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously. The eluate was approximately 160 milliliters in volume, and contained approximately 12 milligrams protein per milliter. This CM SEPHAROSE eluate was split into two equal portions of approximately 80 milliliters, and was used in Examples IA and IB for the HIC load.
To 80 milliliters of CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 40 milliliters of Guanidine Stock Solution. This brought the guanidine concentration to 2M for viral inactivation. While stirring the guanidine-treated solution, a total of 120 milliliters of 2.6M Ammonium Sulfate Stock Solution was added. The resulting solution was 1.0M in guanidine and 1.3M in ammonium sulfate. The ammonium sulfate treated solution was applied to an 80 mL column (3.2 cm diameter×10 cm length) of TOYOPEARL Phenyl-650M, previously equilibrated with Phenyl Equilibration Buffer. The flow rate was 20 mL/min throughout the run. After loading, the column was washed with approximately 350 milliliters of Phenyl Equilibration Buffer. The IgG was eluted by applying a linear gradient starting at 85% Equilibration/15% Gradient buffer and ending at 0% Equilibration/100% Gradient buffer, in 18-19 column volumes. This represents a starting ammonium sulfate concentration of approximately 1.1M and an ending concentration of 0M. The slope of this gradient was approximately a 4.7% increase in elution buffer per column volume, or −0.061M ammonium sulfate per column volume. The IgG began to elute from the column at approximately 7 column volumes and ended at approximately 13 column volumes into the gradient (ammonium sulfate concentration of approximately 0.7 to 0.3M). The eluted fraction was collected until the UV absorbance on the tailing side of the peak decreased to 20% of the peak height, then collection was switched to another vessel (tail fraction). At the end of the gradient, approximately 250 mL of HIC Strip Buffer was applied to regenerate the column. Fractions of the Phenyl non-bound, eluate, tail and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously. The eluate was approximately 300 milliliters in volume, and contained approximately 2.4 milligrams protein per milliter.
Table 2 summarizes the column parameters for this example. The product and protein recovery data for each step are shown in Table 3, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg). As seen in Table 3, the Protein A reduction over Phenyl-650M is approximately 4-fold, and the recovery is approximately 94%.
TABLE 2
Column Parameters at 1 gram scale using Phenyl-650M
Column Column
Volume dia × length Load Flow Rates
Step (liter) (cm) Ratio (cm/ hr) (mL/min)
ProSep A 5.0  20 × 16 16.0 g IgG per 1000 5200
liter bed volume
CM SEPHAROSE FF 0.22 4.4 × 15  9.1 g protein per 150 38
liter bed volume
Phenyl-650M 0.08 3.2 × 10 10.4 g protein per 150 20
liter bed volume
TABLE 3
Purification Summary for Example IA,
1 gram scale using Phenyl-650M
Total
RSHZ- Total Step Protein
Volume
19a Proteinb Yield Ac
Step (Liters) (Grams) (Grams) (%) (ng/mg)
Cell-free 100 80.3 n.d. 0
Culture Fluid
ProSep A 15.8 73.8 80.4 92 20.2
Eluate
CM SEPHA- (0.4)d (1.87)d (2.04)d
ROSEd Load
CM SEPHA- 0.16 20.1 1.88 100  14.5
ROSE Eluate
Phenyl-650Md (0.21)d (0.72)d (0.83)d
Load
Phenyl-650M 0.31 0.68 0.73 94 3.5
Eluate
(Phenyl Tail 0.59 0.075 0.10 133)e
Cumulative 86
Recovery
(%)
aby HPLC
bby Absorbence at 280 nm ÷ 1.27 mL mg−1 cm−1
cby ELISA
dOnly a portion of the total eluate from the previous column was carried forward, as described in the text above
eProtein A migrates primarily in the Tail fraction

Example IB. RSHZ-19 Purification at 1 Gram Scale Using TOYOPEARL Butyl-650M
This preparation used the same CM SEPHAROSE eluate as described in Example IA, and the HIC step was performed using TOYOPEARL Butyl-650M instead of Phenyl-650M. The preparation of the CM SEPHAROSE eluate is described in Example IA above. To 80 milliliters of CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 40 milliliters of Guanidine Stock Solution. This brought the guanidine concentration to 2M for viral inactivation. While stirring the guanidine-treated solution, a total of 120 milliliters of 2.0M Ammonium Sulfate Stock Solution was added. The resulting solution was 1.0M in guanidine and 1.0M in ammonium sulfate. The ammonium sulfate treated solution was applied to a an 80 mL column (3.2 cm diameter×10 cm length) of TOYOPEARL Butyl-650M, previously equilibrated with Butyl Equilibration Buffer. The flow rate was 20 mL/min throughout the run. After loading, the column was washed with approximately 350 milliliters of Butyl Equilibration Buffer. The IgG was eluted by applying a linear gradient starting at 65% Equilibration/35% Gradient buffer and ending at 20% Equilibration/80% Gradient buffer, in 12-13 column volumes. This represents a starting ammonium sulfate concentration of approximately 0.65M and an ending concentration of approximately 0.2M. The slope of this gradient was approximately a 3.3% increase in elution buffer per column volume, or −0.033M ammonium sulfate per column volume. The IgG began to elute from the column at approximately 2 column volumes and ended at approximately 9 column volumes into the gradient (ammonium sulfate concentration of approximately 0.58 to 0.35M). The eluate fraction was collected until the UV absorbance on the tailing side of the peak decreased to 10% of the peak height, then collection was switched to another vessel. At the end of the gradient, approximately 250 mL of Butyl Gradient Buffer was applied, and a small peak eluted and was collected. Approximately 250 mL of HIC Strip Buffer was applied to regenerate the column. Fractions of the Butyl non-bound, eluate, tail and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously. The eluate was approximately 400 milliliters in volume, and contained approximately 1.5 milligrams protein per milliter.
Table 4 summarizes the column parameters for this example. The product and protein recovery data for each step are shown in Table 5, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg). Although the recovery of IgG is lower compared to Example IA (79% v. 94%), the Protein A content is reduced approximately 20-fold using Butyl-650M as an HIC step.
TABLE 4
Column Parameters at 1 gram scale using Butyl-650M
Column Column
Volume dia × length Load Flow Rates
Step (liter) (cm) Ratio (cm/hr) (mL/min)
CM SEPHAROSE FF 0.22 4.4 × 15  9.1 g protein per 150 38
liter bed volume
Butyl-650M 0.08 3.2 × 10 10.4 g protein per 150 20
liter bed volume
TABLE 5
Purification Summary for Example IB,
1 gram scale using Butyl-650M
Total
RSHZ- Total Step Protein
Volume
19a Proteinb Yield Ac
Step (Liters) (Grams) (Grams) (%) (ng/mg)
Cell-free 100 80.3 n.d. 0
Culture Fluid
ProSep A 15.8 73.8 80.4 92 20.2
Eluate
CM SEPHA- (0.4)d (1.87)d (2.04)d
ROSEd Load
CM SEPHA- 0.16 2.01 1.88 100  14.5
ROSE Eluate
Butyl-650Md (0.21)d (0.76)d (0.86)d
Load
Butyl-650M 0.41 0.60 0.62 79 0.7
Eluate
(Butyl Tail 0.40 0.03 0.03 31.4)e,f
(Butyl Strip 0.53 0.10 0.10 n.d.)g
Cumulative 73
Recovery
Mass Balance 95
(% of load)
aby HPLC
bby Absorbence at 280 nm ÷ 1.27 mL mg−1 cm−1
cby ELISA
dOnly a portion of the total eluate from the previous column was carried forward, as described above
eProtein A migrates primarily in the Tail fraction
fTail contains 3% of the load
gstrip contains 13% of the protein that was loaded

Example IC. RSHZ-19 Purification at 40 Gram Scale Using TOYOPEARL Phenyl-650M
This preparation used the same ProSep A eluate as described in Example IA, and the downstream steps were scaled-up to accommodate approximately 40 grams of protein, using TOYOPEARL Phenyl-650M as the HIC medium. The preparation of the CM SEPHAROSE Load is described in Example IA above. 7.8 liters of pH 3.5 treated and filtered ProSep A eluate were loaded directly onto a 4.2 liter (25 cm diameter×8.5 cm length) column of CM SEPHAROSE FF which had been previously equilibrated with CM Equilibration buffer at 1.2 L/min. After loading, the column was washed at 1.2 L/min with approximately 8 liters of CM Equilibration Buffer. The IgG was eluted by applying CM Elution Buffer at 1.2 L/min. The IgG came off the column after approximately 1 bed volume of Elution Buffer had passed. The entire peak was collected as CM SEPHAROSE eluate. The column fractions of the CM non-bound and eluate were collected and analyzed for IgG content, total protein content, and Protein A content as described previously. The eluate was approximately 5.7 liters in volume, and contained approximately 6-7 milligrams protein per milliter.
To 5.6 liters of CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 2.8 liters of Guanidine Stock Solution (3.2 kilogram by weight). This brought the guanidine concentration to 2M for viral inactivation, at a volume of 8.3 liters. While stirring the guanidine-treated solution, a total of 8.3 liters (9.7 kg by weight) of 2.6M Ammonium Sulfate Stock Solution was added. The resulting solution was 1.0M in guanidine and 1.3M in ammonium sulfate, with a final volume of 16.7 liters. The ammonium sulfate treated solution was applied to a 4.6 liter column (18 cm diameter×18 cm length) of TOYOPEARL Phenyl-650M, previously equilibrated with Phenyl Equilibration Buffer. The flow rate was 0.5-0.6 L/min throughout the run. After loading, the column was washed with approximately 14 liters of Phenyl Equilibration Buffer. The IgG was eluted by applying a linear gradient starting at 100% Equilibration Buffer and ending at 100% Gradient buffer, in 20 column volumes. This represents a starting ammonium sulfate concentration of approximately 1.3M and an ending concentration of 0M. The slope of this gradient was approximately a 5% increase in elution buffer per column volume, or −0.065M ammonium sulfate per column volume. The IgG began eluting from the column at approximately 7 column volumes and ended at approximately 12 column volumes into the gradient (ammonium sulfate concentration of approximately 0.85 to 0.5M). The eluate fraction was collected until the UV absorbance on the tailing side of the peak decreased to 20% of the peak height, then collection was switched to another vessel (tail). Fractions of the Phenyl non-bound, eluate and tail and strip fractions were collected and analyzed for IgG content, total protein content, and Protein A content as described previously. The eluate was approximately 15.4 L in volume, and contained approximately 2.2 milligrams protein per milliter.
The Phenyl Eluate was concentrated to approximately 16 mg/mL using a tangential flow ultrafiltration apparatus (CUF, Millipore Corp.) equipped with 30,000 MWCO Omega membranes (Filtron Corp.) and buffer exchanged by continuous diafiltration against a suitable formulation buffer.
Table 6 summarizes the column parameters for this example. The product and protein recovery data for each step are shown in Table 7, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg) and the IgG aggregate content, expressed as % of total IgG. As seen in Table 7, the Protein A reduction over Phenyl-650M is approximately 3-fold, and the recovery is approximately 90%. IgG aggregates were reduced from 0.5% in the CM SEPHAROSE eluate to 0.06% in the formulated product.
TABLE 6
Column Parameters at 40 gram scale
Column Column
Volume dia × length Load Flow Rates
Step (liter) (cm) Ratio (cm/hr) (L/min)
CM SEPHAROSE FF 4.2  25 × 8.5 8.9 g protein per 150 1.2
liter bed volume
Phenyl-650M 4.6 18 × 18 10.4 g protein per 140 0.6
liter bed volume
TABLE 7
Purification Summary for Example IC: 40 gram scale
Total Total Step IgG
Volume RSHZ-19a Proteinb Yield Protein Ac Aggregate
Step (Liters) (Grams) (Grams) (%) (ng/mg) (%)
Cell-free Culture 100 80.3 n.d. 0 n.d.
Fluid
ProSep A 15.8 73.8 80.4 92 20.2 n.d.
Eluate
CM SEPHAROSEd (7.84)d (36.0)d (37.3)d
Load
CM SEPHAROSE 5.71 36.5 37.3 100  21.4 0.5%
Eluate
Phenyl-650M 15.4 32.8 33.6 90 8.0 <0.05
Eluate (Product)
Phenyl Tail 24.6 2.5 3.0 78.0 5.1)e
Formulated 2.0 32.8 32.0 100  6.5 0.06
Product
Cumulative Recovery 83
(%)
Mass Balance (% of load) 97
aby HPLC
bby Absorbence at 280 nm ÷ 1.27 mL mg−1 cm−1
cby ELISA
dOnly a portion of the total ProSep A Eluate was carried forward
eProtein A and IgG aggregates migrate primarily in the tail fraction

Example ID. RSHZ-19 Purification at 125 Gram Scale Using TOYOPEARL Phenyl-650M
A 5.5 liter (20 cm diameter by 18 cm length) ProSep A affinity column was equilibrated with PBS (see Table 1) at 4.8 liter/min. 450 liters of conditioned culture medium containing 0.94 grams per liter of RSHZ-19 monoclonal antibody was clarified by microfiltration as described above, and applied in four separate 90-95 liter portions and one 40 liter portion to the column at a flow rate of 4.8 liter/min (and so throughout). Each cycle on the column ran as follows: After the load, approximately 17 liters of PBS/glycine was applied to the column at the same flow rate. The IgG was eluted by applying 15-20 liters of ProSep A Elution buffer. Fractions of the non-bound peak and the elution peak were collected and assayed for IgG content using an HPLC assay. The eluate from each cycle was approximately 9 liters in volume, and contained approximately 5-10 milligrams protein per milliliter. Immediately after elution, the ProSep A eluates were adjusted to pH 3.5 by the addition of 2.5M hydrochloric acid, held for approximately 30 minutes, and adjusted to pH 5.5 by the addition of approximately 250 milliliters of 1M Tris base. After neutralizing to pH 5.5, the eluates were pooled together, and filtered through a 0.1 micron Polygard CR filter in tandem with a sterile 0.2 micron Millipak 200, in 5 liter aliquots in sterile containers. The filtrate was stored at 4° C. Samples of the filtrate were analyzed for IgG content using an HPLC assay, and for total protein by absorbance at 280 nanometers. The samples were also analyzed for Protein A content by an ELISA procedure, and IgG aggregates by HPLC.
The downstream steps were scaled-up to accommodate approximately 120-140 grams of protein. 16.3 liters of pH 3.5 treated and filtered ProSep A eluate containing approximately 130 grams of protein was loaded directly onto a 14.4 liter (35 cm diameter×15 cm length) column of CM SEPHAROSE FF at 2.4 L/min, which had been previously equilibrated with CM Equilibration buffer. After loading, the column was washed at 2.4 L/min with approximately 45 liters of CM Equilibration Buffer. The IgG was eluted by applying CM Elution Buffer at 2.4 L/min. The IgG began to elute from the column after approximately 1-2 bed volumes of Elution Buffer had passed. The entire peak was collected as CM SEPHAROSE eluate. Fractions of the CM non-bound and eluate were collected and analyzed for IgG content, total protein content, and IgG aggregate. The eluate was approximately 21 liters in volume, and contained approximately 120 grams protein.
To 19.4 liters of CM SEPHAROSE eluate was added (slowly with constant stirring) a total of 9.7 liters of Guanidine Stock Solution. This brought the guanidine concentration to 2M for viral inactivation, at a volume of 29.1 liters. While stirring the guanidine-treated solution, a total of 29.1 liters of 2.6M Ammonium Sulfate Stock Solution was added. The resulting solution was 1.0M in guanidine and 1.3M in ammonium sulfate, with a final volume of 58.2 liters. The ammonium sulfate treated solution was applied to a 12.4 liter column (30 cm diameter×18 cm length) of TOYOPEARL Phenyl-650M, previously equilibrated with Phenyl Equilibration Buffer. The flow rate was 1.1-1.3 L/min throughout the run. After loading, the column was washed with approximately 37 liters of Phenyl Equilibration Buffer. The IgG was eluted by applying a linear gradient starting at 80% Equilibration Buffer/20% Gradient Buffer and ending at 20% Equilibration Buffer/80% Gradient buffer, in 12 column volumes. This represents a starting ammonium sulfate concentration of approximately 1.0M and an ending concentration of approximately 0.26M. The slope of this gradient was approximately a 5% increase in Gradient buffer per column volume, or −0.065M ammonium sulfate per column volume. The IgG came off the column essentially in the middle of the gradient, with the peak containing approximately 0.8M ammonium sulfate. The eluate fraction was collected until the UV absorbance on the tailing side of the peak decreased to 20% of the peak height, then collection was switched to another vessel (tail). Fractions of the Phenyl non-bound, eluate and tail and strip fractions were collected and analyzed for IgG content, total protein content, and IgG aggregate. The eluate was approximately 29 L in volume, and contained approximately 100 grams protein.
The Phenyl Eluate was concentrated to approximately 10 mg/mL using a tangential flow ultrafiltration apparatus (CUF, Millipore Corp.) equipped with 30,000 MWCO Omega membranes (Filtron Corp.) and buffer exchanged by continuous diafiltration against a suitable formulation buffer. The product was analyzed for IgG content, total protein, Protein A and IgG aggregate.
Table 8 summarizes the column parameters for this example. The product and protein recovery data for each step are shown in Table 9, along with the Protein A content, expressed as nanograms Protein A per milligram IgG (ng/mg) and the IgG aggregate content, expressed as % of total IgG. As seen in Table 9, the Protein A reduction over CM SEPHAROSE and Phenyl-650M is approximately 7-fold, and the cumulative recovery is approximately 70%. IgG aggregates were reduced from 0.4% in the CM SEPHAROSE eluate to 0.06% in the formulated product.
TABLE 8
Column Parameters at 125 gram scale
Column Column
Volume dia × length Load Flow Rates
Step (liter) (cm) Ratio (cm/hr) (L/min)
ProSep A 5.0 20 × 18 14-16 g RSHZ-19 915 4.8
per liter bed volume
CM SEPHAROSE FF 14.4 35 × 15 8.4 g protein per 150 2.4
liter bed volume
Phenyl-650M 12.4 30 × 18 8.6 g protein per 100 1.2
liter bed volume
TABLE 9
Purification Summary for Example ID: 125 gram scale
Total Total Step IgG
Volume RSHZ-19a Proteinb Yield Protein Ac Aggregate
Step (Liters) (Grams) (Grams) (%) (ng/mg) (%)
Cell-free Culture 416 392  477C 0 n.d.
Fluid
ProSep A 48.7 375 384 96 11.7 0.4
Eluate
CM SEPHAROSEd (16.3)d (125)d (129)d
Load
CM SEPHAROSE 20.6 116 117 93 n.d. 0.4
Eluate
Phenyl-650M 29.1   98.1   99.8 85 n.d. <0.05
Eluate
Formulated 9.29   89.8   91.1 92 1.7 0.06
Product
Cumulative Recovery 70
(%)
aby Reversed-Phase HPLC
bby Absorbence at 280 nm ÷ 1.27 mL mg−1 cm−1
cby Bradford assay
dDownstream process capacity is approximately 140 grams; only a portion of the total ProSep A eluate is carried forward
TABLE 10
Purity analysis: 125 Gram Scale
Aggregates Puritya Activityb
Step (% of Total IgG) (% of Total Area) (%)
CCF not applicable not done   80c
ProSep Eluate 0.4 98.5 105
CM Eluate 0.4 98.4 109
Phenyl Eluate <0.05 98.3  99
Final product 0.06 99.7 115
aDetermined by scanning densitometry of reducing SDS-PAGE; sum of area of Heavy and Light chains of IgG
bCalculated ratio of activity (determined by Bovine RS Virus binding ELISA) to RSHZ-19 concentration (determined by A280)
cCalculated ratio of activity, by bovine RS virus ELISA, to RSHZ-19 concentration by HPLC
EXAMPLE II
The anti-CD4 monoclonal antibody CH-CD14 was made by cell culture techniques and partially purified using Protein A and ion exchange chromatography in a fashion similar to that used in Example I, except that an anion exchange resin was employed. An Amicon column (1 cm diameter by 10 cm high) was packed with 8 mL of Phenyl TOYOPEARL 650M resin (lot #65PHM01 H). The flow rate was maintained at 2 mL/min for all steps. The column was equilibrated with 20 mL Equilibration buffer (1M ammonium sulfate, 50 mM sodium phosphate, pH 7.0). The product was prepared for loading on the column by taking 5 mL partially purified CH-CD4 monoclonal antibody (17 mg/mL concentration by absorbance at 280 nm), adding 2.5 mL 6M guanidine HCl, 50 mM sodium phosphate, pH 7.0, mixing, holding for 30 minutes, and then adding 7.5 mL 2M ammonium sulfate, 50 mM sodium phosphate, pH 7.0. The final ammonium sulfate concentration of the load was 1M, the final guanidine HCl concentration was 1M, the final volume after samples were taken was 12 mL, and the final concentration of product was 5.6 mg/mL. This material was then loaded on the column at 2 mL/min and then eluted with a 10 column volume linear gradient of Equilibration buffer to 50 mM sodium phosphate, pH 7.0. Fractions of approximately 4 mL were taken as the product eluted from the column.
The results are shown in Table 11. All of the product eventually eluted in the gradient. Protein A also eluted and was enriched in later fractions from the gradient. To achieve a reduction in Protein A in the final product, it was necessary to exclude some of the fractions at the end of the gradient, thus reducing the yield of product. A two-fold reduction in Protein A was possible with an 86% yield of product and a three-fold reduction was possible with a 50% yield.
TABLE 11
Cumulative
Specific Cumulative Protein A
Fraction Volume Product Protein A Protein A Product Removal
No. (mL) (mg/mL) (ng/mL) (ng/mg) Yield Factora
0 Load 5.8 200.7 35
12
Eluate
1 5.5 0.04 0.0 0  0%
2 3 0.31 0.0 0  2%
3 4.2 1.32 6.4 4 10% 8.6
4 4.2 3.1 16.9 5 28% 7.0
5 4 4 68.3 10 51% 3.3
6 4.2 3.4 80.9 14 72% 2.4
7 4.2 2.3 94.1 19 86% 1.9
8 4.2 1.3 79.3 22 94% 1.6
9 4.2 0.71 49.9 24 98% 1.4
10 4.2 0.36 32.8 26 100%  1.3
11 4 0.19 22.9 27 101%  1.3
12 4 0.11 13.5 27 102%  1.3
13 9.6 0.05 8.5 28 102%  1.2
aRemoval factor is calculated by pooling eluate fractions from start of eluate to desired fraction and dividing initial Protein A in load by Protein A ng/mg in pooled eluate fractions. For example, the factor 8.6 is calculated by dividing the sum of Protein A in fractions 1-3 by the sum of product in fractions 1-3 to get ng/mg. This number is then divided by 35 ng/mg in the load to obtain 8.6.
EXAMPLE IIB:
CH-CD4 monoclonal antibody was partially purified, and prepared for loading on the HIC column as described in example IIA. The same column, flowrate, equilibration and loading described in example IIA were used. In this example, after the column was loaded and washed with Equilibration buffer, it was washed with 18 mL Wash buffer (1M ammonium sulfate, 50 mM sodium citrate, pH 3.5). This was followed by another washing with 13.5 mL Equilibration buffer (described in example IIA). The column was eluted with a gradient and then washed with water as described in example IIA. The column eluate was divided into 14 mL fractions which were then analyzed for product and Protein A.
The results are presented in Table 12. Protein A could be reduced by 6 fold at 90% yield, and by 8 fold at 78% yield.
TABLE 12
Cumulative
Specific Cumulative Protein A
Fraction Volume Product Protein A Protein A Product Removal
No. (mL) (mg/mL) (ng/mL) (ng/mg) Yield Factor1
0 Load 5.80 167.1 29
12
Eluate
1 14 1.50 0 0.0 30%
2 14 2.35 13.6 3.5 78% 8.1
3 14 0.38 8.3 5.2 85% 5.6
4 14 0.18 0 5.0 89% 5.8
5  9 0.13 0 4.9 91% 5.9
1As in footnote “a” to Table 11.
Comparing the results of example IIB with example IIA it can be seen that Protein A was reduced by 6 to 8 fold with about 80% yield when the pH 3.5 wash was included, but reduction was only about 2 fold with 80% yield of CH-CDH without the pH 3.5 wash.
EXAMPLE IIC:
This example was performed similar to example IIB, except that the scale was increased. Equilibration and Wash buffers are described in example IIB. The column was 5 cm in diameter and 28 cm high and the flowrate was 50 mL/min. CH-CD4 monoclonal antibody was prepared and partially purified, as described in example IIA. The partially purified product (440 mL) was mixed with 220 mL 6M guanidine HCl for 31 min. Then, 660 mL 2M ammonium sulfate, 50 mM sodium phosphate, pH 7.0 was added. The final ammonium sulfate concentration was 1M and the final antibody concentration was 5.3 mg/mL. After sampling, the load volume was 1,290 mL.
The column was equilibrated with 2 column volumes of Equilibration buffer and then loaded on the column. The column was then washed with 630 mL of Equilibration buffer, 1,000 mL of Wash buffer, 800 mL of Equilibration buffer, and then eluted with a 5 column volume gradient from 0.75M ammonium sulfate, 50 mM sodium phosphate, pH 7.0, to 50 mM sodium phosphate, pH 7.0. Fractions were collected during elution.
The results are presented in Table 13. Protein A was reduced 100 fold with a yield of 70%, or by 30 fold with an antibody yield of 80%.
TABLE 13
Cumulative
Specific Cumulative Protein A
Fraction Volume Product Protein A Protein A Product Removal
No. (mL) (mg/mL) (ng/mL) (ng/mg) Yield Factora
0 Load 5.30 198 37
1290 
Eluate
1 581 0.03 0 0.0  0%
2 304 3.60 0 0.0 16%
3 243 5.40 0 0.0 35%
4 238 4.50 0 0.0 51%
5 237 3.40 2.4 0.1 63% 282
6 239 2.2 4.7 0.4 71% 107
7 256 1.2 4.8 0.6 75% 66
8 252 0.7 7.6 0.9 78% 41
9 240 0.4 5.3 1.1 79% 33
10 250 0.4 5.7 1.4 81% 27
11 202 0.4 4.38 1.5 82% 25
12 210 1 148.5 6.8 85% 5
EXAMPLE IID
Partially purified CH-CD4 monoclonal antibody was prepared as shown in example IIA. Equilibration and Wash buffers are described in example IIB. Four milliliters of 6M guanidine HCl, 50 mM sodium phosphate, pH 7.0 was added to 8 mL of a 9.5 mg/mL solution of partially purified CH-CD4 monoclonal antibody and incubated for 30 minutes. Then, 12 mL of 2M ammonium sulfate, 50 mM sodium phosphate, pH 7.0 was added slowly. The column was 0.5 cm in diameter and 20 cm high (4 mL) and the flowrate for all steps was 0.5 mL/min. The column was rinsed with 2 column volumes each of water and Equilibration buffer. Then, 22 mL of the load solution was passed through the column, followed by 2 column volumes of Equilibration buffer, followed by Wash buffer until the pH of the column effluent was 3.5. This was followed by Equilibration buffer until the effluent pH was 7.0. The column was eluted with 0.3M ammonium sulfate, 50 mM sodium phosphate, pH 7.0. After the UV trace started to rise, 12.6 mL of eluate were collected and analyzed for product and Protein A. The yield of product was 80% and the Protein A was reduced from 28 ng/mg to 6 ng/mg, a reduction of 4.7 fold.

Claims (41)

1. A method for purifying monomeric IgG antibody from a mixture comprising said monomeric antibody and at least one of immunoglobulin aggregates, misfolded species, host cell protein or protein A comprising contacting said mixture with a hydrophobic interaction chromatographic support and selectively eluting the monomer from the support.
2. The method according to claim 1 A method for purifying monomeric IgG antibody from a mixture comprising said monomeric IgG antibody and at least one of immunoglobulin aggregates, misfolded species, and protein A, wherein said method comprises the steps of: (i) contacting said mixture with a hydrophobic interaction chromatographic support and (ii) selectively eluting the monomeric IgG antibody from the support wherein the monomeric IgG is selected from the group consisting of anti-RSHZ-19 and CH-CD4.
3. The method according to claim 1 wherein the HIC support is selected from the group consisting of alkylC2-C8 agarose, aryl-agarose, alkyl-silica, aryl-silica alkyl organic polymer resin and aryl organic polymer resin.
4. The method according to claim 3 wherein the support is selected from the group consisting of butyl-, phenyl-, and octyl-agarose and butyl-, phenyl- and ether- organic polymer resin.
5. The method according to claim 4 wherein the support is phenyl-organic polymer resin.
6. The method according to claim 4 wherein the support is butyl-organic polymer resin.
7. The method according to claim 1 wherein the antibody is selectively eluted with a low salt buffer.
8. The method according to claim 7 2 wherein the antibody is selectively eluted with a gradient decreasing in salt to 50 mM phosphate, pH7.0.
9. A method for the purification of an IgG antibody from conditioned cell culture medium containing same comprising sequentially subjecting the medium to (a) Protein A affinity chromatography, (b) ion exchange chromatography, and (c) hydrophobic interaction chromatography.
10. The method according to claim 9 wherein the ion exchange chromatography employs a support selected from the group consisting of CM-23—, CM-32-, CM-52- cellulose; CM-and, SP-cross-linked dextrans, CM- and S-argose; CM-organic polymer resin; DEAE-QAE-Q-cross-linked dextians; DEAE-,QAE-,Q- linked agarose; and DEAE organic polymer resins and is by a buffered salt solution.
11. The method according to claim 10 wherein the support is CM-agarose Fast Flow and the salt is NaCl.
12. The method according to claim 10 wherein the buffered salt solution is 40 mM citrate containing, 100 mM, NaCl, pH 6.0.
13. The method according to claim 9 wherein the hydrophobic interaction chromatographic employs a support selected from the group consisting of alkylC2-C8-agarose, aryl-agarose, alkyl-silica, aryl-silica, alkyl-organic polymer resin and aryl-organic polymer resin.
14. The method according to claim 13 wherein the support is selected from the group consisting of butyl-, phenyl- and octyl-agarose and butyl-, phenyl- and ether-organic polymer resin.
15. The method according to claim 14 wherein the support is phenyl-organic polymer resin or butyl-organic polymer resin.
16. The method according to claim 9 wherein the support is phenyl- or butyl-organic polymer resin and the antibody is selectively eluted with a low salt buffer.
17. The method according to claim 16 wherein the antibody is selectively eluted with a gradient decreasing to 50 mM sodium phosphate buffer, pH 7.0.
18. The method according to claim 9 wherein the Protein A chromatography employs as a support Protein A linked to controlled pore glass and elution is by a low pH buffer.
19. The method according to claim 18 wherein said buffer is 25 mM citrate, pH 3.5.
20. A method for purifying antibody from a conditioned cell medium comprising:
(a) adsorbing the antibody onto a Protein A chromatographic support;
(b) washing the adsorbed antibody with at least one buffer;
(c) eluting the antibody from step (b);
(d) adsorbing the antibody from step (c) onto an ion exchange chromatographic support;
(e) washing the absorbed antibody with at least one buffer;
(f) selectively eluting the antibody from step (e);
(g) adsorbing the eluate of step (f) onto a hydrophobic interaction chromatographic support;
(h) washing the adsorbed antibody with at least one buffer;
(i) eluting the adsorbed antibody; and
(j) recovering the antibody.
21. The method according to claim 20 which includes one or more optional steps of inactivating viruses if present.
22. The method according to claim 21 wherein a viral inactivation step is performed after step (f) and before step (g).
23. The method according to claim 22 wherein said viral inactivation step comprises treatment of the eluate with guanidine hydrochloride for a period of time sufficient to inactivate virus followed by the addition of an ammonium sulfate solution.
24. The method according to claim 23 wherein the guanidine hydrochloride is present at 2.0M and following treatment eluate from step (f) is adjusted to 1.3M ammonium sulfate.
25. The method according to claim 22 wherein an additional viral inactivation step is performed after step (c) and before step (d).
26. The method according to claim 25 wherein said additional viral inactivation step comprises treatment of the eluate of step (c) with acid.
27. The method according to claim 26 wherein the pH of the eluate is adjusted to pH 3.5 and maintained at that pH for a period of time sufficient to inactivate virus, and terminating the treatment by adjusting the pH to 5.5.
28. The method according to claim 20 wherein the ion exchange support of step (d) is selected from the group consisting of carboxymethyl (CM), sulfoethyl (SE), sulfopropyl (SP), phosphate(P), diethylaminoethyl (DEAE), quaternary aminoethyl (QAE), and quaternary (Q), substituted cellulosic resins, cross linked dextrans, agarose and organic polymer resins.
29. The method according to claim 28 wherein the cationic support is CM-agarose.
30. The method according to claim 20 wherein the hydrophobic interaction chromatographic support is selected from the group consisting of alkyl C2-C8-agarose, aryl-agarose, alkyl-silica, aryl-silica, alkyl-organic polymer resin and aryl-organic polymer resins.
31. The method according to claim 30 wherein the support is selected from the group consisting of butyl-, phenyl- and octyl-agarose and phenyl-, ether- and butyl-organic polymer resins.
32. The method according to claim 31 wherein the support is phenyl- or butyl-organic polymer resins.
33. The method according to claim 20 wherein said protein is recovered by pooling and concentrating the protein containing fractions from chromatography step (i) by ultrafiltration.
34. The method according to claim 20 wherein the chromatographic support of step (a) is Protein A linked to controlled pore glass.
35. The method according to claim 20 wherein the absorbed antibody of step (h) is washed with two buffers, a first equibration buffer and a second low pH wash buffer.
36. The method according to claim 35 wherein the pH of the second buffer is less than 4.0.
37. The method according to claim 36 wherein the second buffer is 1M ammonium sulfate, 50 mM sodium citrate, pH 3.5.
38. A method of removing Protein A from a mixture comprising Protein A and IgG antibodies comprising contacting the mixture with a hydrophobic interaction chromatography support and selecting eluting the antibody from the support.
39. The method according to claim 38 A method for removing Protein A from a mixture comprising Protein A and IgG antibodies comprising contacting said mixture with a hydrophobic interaction chromatography support and selectively eluting the antibody from the support which includes washing the support prior to elution with a buffer having a pH less than 7.0.
40. The method according to claim 39 wherein the pH of the wash buffer is less than 4.0.
41. The method according to claim 40 wherein the buffer is ( 1M ammonium sulfate, 50 mM sodium citrate, pH 3.5) .
US11/140,525 1994-02-22 2005-05-27 Antibody purification Expired - Lifetime USRE40070E1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/140,525 USRE40070E1 (en) 1994-02-22 2005-05-27 Antibody purification
US11/804,729 USRE41555E1 (en) 1994-02-22 2007-05-18 Antibody purification
US12/403,799 USRE41595E1 (en) 1994-02-22 2009-03-13 Antibody purification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/200,126 US5429746A (en) 1994-02-22 1994-02-22 Antibody purification
US11/140,525 USRE40070E1 (en) 1994-02-22 2005-05-27 Antibody purification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/200,126 Reissue US5429746A (en) 1994-02-22 1994-02-22 Antibody purification

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08/200,126 Continuation US5429746A (en) 1994-02-22 1994-02-22 Antibody purification
US11/804,729 Continuation USRE41555E1 (en) 1994-02-22 2007-05-18 Antibody purification

Publications (1)

Publication Number Publication Date
USRE40070E1 true USRE40070E1 (en) 2008-02-19

Family

ID=22740445

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/200,126 Ceased US5429746A (en) 1994-02-22 1994-02-22 Antibody purification
US11/140,525 Expired - Lifetime USRE40070E1 (en) 1994-02-22 2005-05-27 Antibody purification
US11/804,729 Expired - Lifetime USRE41555E1 (en) 1994-02-22 2007-05-18 Antibody purification
US12/403,799 Expired - Lifetime USRE41595E1 (en) 1994-02-22 2009-03-13 Antibody purification

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/200,126 Ceased US5429746A (en) 1994-02-22 1994-02-22 Antibody purification

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/804,729 Expired - Lifetime USRE41555E1 (en) 1994-02-22 2007-05-18 Antibody purification
US12/403,799 Expired - Lifetime USRE41595E1 (en) 1994-02-22 2009-03-13 Antibody purification

Country Status (22)

Country Link
US (4) US5429746A (en)
EP (1) EP0746398B1 (en)
JP (1) JP4198751B2 (en)
KR (1) KR100372209B1 (en)
CN (1) CN1146730A (en)
AT (1) ATE218387T1 (en)
AU (1) AU689552B2 (en)
BR (1) BR9507100A (en)
CA (1) CA2183888C (en)
CZ (1) CZ292001B6 (en)
DE (1) DE69526929T2 (en)
DK (1) DK0746398T3 (en)
ES (1) ES2177632T3 (en)
HK (1) HK1013806A1 (en)
HU (1) HU217850B (en)
MX (1) MX9603637A (en)
NO (1) NO319182B1 (en)
NZ (1) NZ281480A (en)
PT (1) PT746398E (en)
SI (1) SI0746398T1 (en)
WO (1) WO1995022389A1 (en)
ZA (1) ZA951372B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311681A1 (en) * 2004-12-23 2008-12-18 Ib Johannsen Antibody Binding Affinity Ligands
USRE41974E1 (en) 1990-10-17 2010-11-30 Glaxosmithkline Llc Method for culturing Chinese hamster ovary cells
US9505803B2 (en) 2009-12-18 2016-11-29 Novartis Ag Wash solution and method for affinity chromatography
US11155575B2 (en) 2018-03-21 2021-10-26 Waters Technologies Corporation Non-antibody high-affinity-based sample preparation, sorbent, devices and methods
US11333642B2 (en) 2016-10-25 2022-05-17 Regeneran Pharmaceuticals, Inc. Methods and systems for chromatography data analysis
US11369896B2 (en) 2016-08-16 2022-06-28 Regeneron Pharmaceuticals, Inc. Methods for quantitating individual antibodies from a mixture
US11884698B2 (en) 2018-07-02 2024-01-30 Regeneron Pharmaceuticals, Inc. Systems and methods for preparing a polypeptide from a mixture

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935800A (en) * 1994-10-31 1999-08-10 Beth Israel Deaconess Medical Center Assays and kits for determining male fertility
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
DE69739673D1 (en) * 1996-11-27 2009-12-31 Genentech Inc Affinity Purification of Polypeptide Proteins on a Protein A Matrix
DE69837760T3 (en) 1997-06-13 2012-06-21 Genentech, Inc. PROTEIN PURIFICATION BY CHROMATOGRAPHY AND SUBSEQUENT FILTRATION ON LOADED LAYER
US5993653C1 (en) * 1997-08-11 2001-11-06 Phenomenex Composition and column used in hplc
CN1088605C (en) * 1997-09-30 2002-08-07 中国科学院新疆化学研究所 Quality control method for producing petroleum sodium sulfonate
IL121900A (en) * 1997-10-07 2001-12-23 Omrix Biopharmaceuticals Ltd Method for the purification of immunoglobulins
IL139035A0 (en) * 1998-05-06 2001-11-25 Genentech Inc Protein purification by ion exchange chromatography
EP1308455B9 (en) * 1998-05-06 2006-06-14 Genentech, Inc. A composition comprising anti-HER2 antibodies
TR200504220T2 (en) 1998-12-17 2007-04-24 Biogen Idec Ma Inc. Active lymphotoxin-beta receptor immunoglobulin chime A method for high level expression and purification of purified protein proteins and a method for purification of active lymphotoxin-beta receptor immunoglobulin chimeric proteins.
GB9907553D0 (en) * 1999-04-01 1999-05-26 Cantab Pharma Res Purification of biological preparations
DE19932782A1 (en) 1999-07-14 2001-01-18 Biotest Pharma Gmbh Method for the chromatographic fractionation of plasma or serum, preparations thus obtained and their use
ES2338687T3 (en) * 2000-03-27 2010-05-11 Genetics Institute, Llc PROCEDURES TO PURIFY HIGHLY ANIONIC PROTEINS.
SE0001128D0 (en) * 2000-03-30 2000-03-30 Amersham Pharm Biotech Ab A method of producing IgG
US7064191B2 (en) * 2000-10-06 2006-06-20 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
EP3088412B1 (en) * 2001-03-09 2021-05-05 Chugai Seiyaku Kabushiki Kaisha Protein purification method
EP1497318A4 (en) * 2001-04-18 2006-03-01 Dyax Corp Binding molecules for fc-region polypeptides
US7223848B2 (en) * 2001-06-05 2007-05-29 Genetics Institute, Llc Methods for purifying Fc-containing proteins
AU2002351353A1 (en) * 2001-12-19 2003-09-02 Genentech, Inc. Stabilizing polypeptides which have been exposed to urea
JP4460302B2 (en) * 2002-02-05 2010-05-12 ジェネンテック インコーポレイテッド Protein purification method
WO2003073106A2 (en) 2002-02-28 2003-09-04 Microsens Biophage Limited Binding of pathological forms of prion proteins
US20160279239A1 (en) 2011-05-02 2016-09-29 Immunomedics, Inc. Subcutaneous administration of anti-cd74 antibody for systemic lupus erythematosus and autoimmune disease
GB0220894D0 (en) * 2002-09-09 2002-10-16 Millipore Uk Ltd Method of separation
US8420789B2 (en) 2002-09-11 2013-04-16 Chugai Seiyaku Kabushiki Kaisha Method for removing DNA contaminants from a protein-containing sample
CA2499269A1 (en) * 2002-09-17 2004-04-01 Gtc Biotherapeutics, Inc. Isolation of immunoglobulin molecules that lack inter-heavy chain disulfide bonds
PT1601697E (en) * 2003-02-28 2007-09-04 Lonza Biologics Plc Antibody purification by protein a and ion exchange chromatography
GB0304576D0 (en) * 2003-02-28 2003-04-02 Lonza Biologics Plc Protein a chromatography
WO2004087761A1 (en) * 2003-03-31 2004-10-14 Kirin Beer Kabushiki Kaisha Purification of human monoclonal antibody and human polyclonal antibody
CA2529945A1 (en) 2003-06-27 2005-01-06 Biogen Idec Ma Inc. Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous antibody-solutions
US6913695B2 (en) * 2003-07-08 2005-07-05 Bayer Healthcare Llc Sanitization of chromatographic media
TW201319088A (en) * 2003-07-18 2013-05-16 Amgen Inc Specific binding agents to hepatocyte growth factor
EP3722309A1 (en) 2003-07-28 2020-10-14 Genentech, Inc. Reducing protein a leaching during protein a affinity chromatography
WO2005032688A1 (en) * 2003-09-30 2005-04-14 Chromba, Inc. Multicapillary column for chromatography and sample preparation
US20070017870A1 (en) 2003-09-30 2007-01-25 Belov Yuri P Multicapillary device for sample preparation
WO2005042569A1 (en) * 2003-10-24 2005-05-12 Amgen, Inc. Process for purifying proteins in a hydrophobic interaction chromatography flow-through fraction
SE0400501D0 (en) * 2004-02-27 2004-02-27 Amersham Biosciences Ab Antibody purification
EP1718386A1 (en) * 2004-02-27 2006-11-08 GE Healthcare Bio-Sciences AB A process for the purification of antibodies
PE20060287A1 (en) 2004-03-30 2006-05-16 Glaxo Group Ltd HOSM SELECTIVE BINDING IMMUNOGLOBULINS
SE0400886D0 (en) * 2004-04-02 2004-04-02 Amersham Biosciences Ab Process of purification
TWI307630B (en) 2004-07-01 2009-03-21 Glaxo Group Ltd Immunoglobulins
KR101243601B1 (en) * 2004-10-21 2013-03-20 지이 헬스케어 바이오-사이언시스 에이비 Chromatography ligand
WO2006074399A2 (en) 2005-01-05 2006-07-13 Biogen Idec Ma Inc. Multispecific binding molecules comprising connecting peptides
US20080160577A1 (en) * 2005-02-04 2008-07-03 Glaxo Group Limited Optimization of Heterologous Polypeptide Expression
US20160355591A1 (en) 2011-05-02 2016-12-08 Immunomedics, Inc. Subcutaneous anti-hla-dr monoclonal antibody for treatment of hematologic malignancies
WO2006099308A2 (en) * 2005-03-11 2006-09-21 Wyeth A method of weak partitioning chromatography
DE102005012594A1 (en) 2005-03-18 2006-09-21 Bayer Technology Services Gmbh Electric filtration methods
TWI391399B (en) 2005-05-25 2013-04-01 Hoffmann La Roche Method for determining the concentration of a salt for eluting a polypeptide
US20070049732A1 (en) * 2005-09-01 2007-03-01 Zurlo Eugene J Ultra-high yield intravenous immune globulin preparation
TW200801039A (en) * 2005-09-15 2008-01-01 Wyeth Corp Separation methods
GB0525662D0 (en) 2005-12-16 2006-01-25 Glaxo Group Ltd Immunoglobulins
AR058568A1 (en) 2005-12-20 2008-02-13 Bristol Myers Squibb Co METHODS TO PRODUCE A COMPOSITION WITH CTLA4-IG MOLECULES FROM A CROP MEANS
DK2253644T3 (en) 2005-12-20 2014-01-13 Bristol Myers Squibb Co Compositions and Methods for Preparing a Composition
JP2009520469A (en) * 2005-12-22 2009-05-28 コンジュクヘム ビオテクフノロギエス インコーポレイテッド Method for the production of preformed conjugates of albumin and therapeutic agents
CN101935665B (en) * 2006-03-17 2013-08-28 上海抗体药物国家工程研究中心有限公司 Preparation method and application of recombinant protein A gene and expression product thereof
DE102006014579A1 (en) * 2006-03-29 2007-10-04 Epcos Ag Procedure for purifying monomer solution by polymerizing monomer and impurities, where the impurities are at least partially removed by adsorption chromatography
KR20090005315A (en) * 2006-04-05 2009-01-13 애보트 바이오테크놀로지 리미티드 Antibody purification
EP2069387A4 (en) * 2006-06-14 2011-02-02 Glaxosmithkline Llc Methods for purifying antibodies using ceramic hydroxyapatite
TW201516149A (en) 2006-09-13 2015-05-01 Abbvie Inc Cell culture improvements
US9109015B2 (en) * 2006-11-01 2015-08-18 Biogen Ma Inc Method of isolating biomacromolecules using low pH and divalent cations
US7589183B2 (en) * 2006-11-28 2009-09-15 Bio-Rad Laboratories, Inc. Prevention of leaching of ligands from affinity-based purification systems
US20100113746A1 (en) * 2007-04-23 2010-05-06 Arvind Mallinath Lali Process for purification of immunoglobulins using a pseudobioaffinity adsorbent
EP2152745B2 (en) 2007-06-01 2023-03-15 F. Hoffmann-La Roche AG Immunoglobulin purification
US20090149638A1 (en) * 2007-10-03 2009-06-11 Ley Arthur C Systems and methods for purifying proteins
WO2009058769A1 (en) * 2007-10-30 2009-05-07 Schering Corporation Purification of antibodies containing hydrophobic variants
PL2565206T3 (en) 2007-10-30 2017-08-31 Genentech, Inc. Antibody purification by cation exchange chromatography
CA2705334C (en) * 2007-11-12 2018-04-17 Novozymes A/S Dual affinity polypeptides for purification
US20110092686A1 (en) * 2008-03-28 2011-04-21 Pelican Group Holdings, Inc. Multicapillary sample preparation devices and methods for processing analytes
WO2009121032A2 (en) * 2008-03-28 2009-10-01 Pelican Group Holdings, Inc. Sample preparation devices and methods for processing analytes
MX2010011206A (en) * 2008-04-16 2010-11-12 Biogen Idec Inc Method of isolating biomacromolecules using polyalkylene glycol and transition metals.
MX2011001696A (en) * 2008-08-14 2011-03-25 Merck Sharp & Dohme Methods for purifying antibodies using protein a affinity chromatography.
KR20110093799A (en) * 2008-10-20 2011-08-18 아보트 러보러터리즈 Antibodies that bind to il-12 and methods of purifying the same
CN102257005A (en) * 2008-10-20 2011-11-23 雅培制药有限公司 Viral inactivation during purification of antibodies
CN105111309A (en) * 2008-10-20 2015-12-02 Abbvie公司 Isolation and purification of antibodies using protein an appinity chromatography
US20100150864A1 (en) * 2008-10-20 2010-06-17 Abbott Laboratories, Inc. Antibodies that bind to il-18 and methods of purifying the same
UY32341A (en) 2008-12-19 2010-07-30 Glaxo Group Ltd NEW ANTIGEN UNION PROTEINS
CA2745707A1 (en) 2008-12-22 2010-07-01 F. Hoffmann-La Roche Ag Immunoglobulin purification
WO2010080062A1 (en) * 2009-01-08 2010-07-15 Ge Healthcare Bio-Sciences Ab Separation method using single polymer phase systems
EP2414321B1 (en) 2009-03-31 2020-02-12 3M Innovative Properties Company Hydrophobic monomers, hydrophobically-derivatized supports, and methods of making and using the same
RS60577B1 (en) * 2009-10-20 2020-08-31 Abbvie Inc Isolation and purification of anti-il-13 antibodies using protein a affinity chromatography
WO2011080050A2 (en) 2009-12-11 2011-07-07 Novartis Ag Binding molecules
UA104663C2 (en) 2010-01-28 2014-02-25 Глаксо Груп Лимитед Antibody binding to cd127
UA108227C2 (en) 2010-03-03 2015-04-10 ANTIGENCY PROTEIN
WO2011133894A2 (en) * 2010-04-23 2011-10-27 Purdue Research Foundation Protein drug formulations and packages
KR101152036B1 (en) 2010-04-27 2012-06-08 (주)셀트리온 A method to improve the sorbent efficiency of protein A chromatography using switching column with continuous feeding
AR081556A1 (en) 2010-06-03 2012-10-03 Glaxo Group Ltd HUMANIZED ANTIGEN UNION PROTEINS
EP3266793A1 (en) * 2010-06-21 2018-01-10 Kyowa Hakko Kirin Co., Ltd. Method for purifying protein using amino acid
US8987423B2 (en) 2010-07-22 2015-03-24 Glaxosmithkline Biologicals, S.A. MAGE antigen binding proteins
WO2012078677A2 (en) * 2010-12-06 2012-06-14 Tarpon Biosystems, Inc. Continuous processing methods for biological products
RU2586515C2 (en) 2010-12-21 2016-06-10 Ф.Хоффманн-Ля Рош Аг Antibody preparation enriched with isoforms and production method thereof
PL3318571T3 (en) 2011-03-16 2021-07-05 F. Hoffmann-La Roche Ag Ion exchange chromatography with improved selectivity for the separation of polypeptide monomers, aggregates and fragments by modulation of the mobile phase
EP2691411B1 (en) 2011-03-29 2020-02-26 GlaxoSmithKline LLC Buffer system for protein purification
EP2702077A2 (en) 2011-04-27 2014-03-05 AbbVie Inc. Methods for controlling the galactosylation profile of recombinantly-expressed proteins
EP2704751B1 (en) 2011-05-02 2019-04-17 Immunomedics, Inc. Ultrafiltration concentration of allotype selected antibodies for small-volume administration
EP2726101B1 (en) 2011-06-30 2018-08-08 Genzyme Corporation Inhibitors of t-cell activation
JP6292718B2 (en) 2011-07-01 2018-03-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for separating monomeric polypeptides from aggregated polypeptides
EP2734232B1 (en) 2011-07-19 2017-11-01 Philogen S.p.A. Sequential anti-ctla4 and targeted il-2 therapy
UY34317A (en) 2011-09-12 2013-02-28 Genzyme Corp T cell antireceptor antibody (alpha) / ß
US8685241B1 (en) 2011-12-21 2014-04-01 Sepragen Corporation Axial and radial flow columns with inflatable seals to facilitate packing and unpacking
ES2567091T3 (en) * 2012-04-05 2016-04-19 F. Hoffmann-La Roche Ag Amine compounds for the selective preparation of biological samples
WO2013158279A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Protein purification methods to reduce acidic species
WO2013158273A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Methods to modulate c-terminal lysine variant distribution
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
WO2013176754A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Novel purification of antibodies using hydrophobic interaction chromatography
JP6297029B2 (en) * 2012-05-31 2018-03-20 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Chromatographic purification of immunoglobulin G preparations with particles having various functional groups
US20150218208A1 (en) * 2012-08-27 2015-08-06 Asahi Kasei Medical Co., Ltd. Method for purifying antibody by temperature-responsive chromatography
AU2013309506A1 (en) 2012-09-02 2015-03-12 Abbvie Inc. Methods to control protein heterogeneity
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
JOP20200308A1 (en) 2012-09-07 2017-06-16 Novartis Ag IL-18 binding molecules
PL2812091T3 (en) 2012-09-17 2021-07-19 W.R. Grace & Co. - Conn. Chromatography media and devices
CN103073616A (en) * 2013-01-06 2013-05-01 西北大学 Method for removing antibody aggregate by mixed-model chromatographic technology
SG11201507230PA (en) 2013-03-12 2015-10-29 Abbvie Inc Human antibodies that bind human tnf-alpha and methods of preparing the same
US10023608B1 (en) 2013-03-13 2018-07-17 Amgen Inc. Protein purification methods to remove impurities
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
WO2014151878A2 (en) 2013-03-14 2014-09-25 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides
WO2014159579A1 (en) 2013-03-14 2014-10-02 Abbvie Inc. MUTATED ANTI-TNFα ANTIBODIES AND METHODS OF THEIR USE
JP6472786B2 (en) * 2013-03-15 2019-02-20 アルダー・バイオファーマシューティカルズ・インコーポレーテッド Antibody purification and purity monitoring
RU2651483C2 (en) * 2013-03-15 2018-04-19 ГлаксоСмитКлайн Интеллекчуал Проперти (N2) Лимитед Methods for purifying antibodies
WO2014209508A1 (en) * 2013-05-13 2014-12-31 Medimmune, Llc Separation of recombinant polyclonal antibody multimers with minimal separation of monomers
ES2531459B1 (en) * 2013-06-10 2015-12-28 Antonio VILA SANJURJO Method for the physical separation of convoluted "traductomas"
AR096713A1 (en) 2013-06-25 2016-01-27 Cadila Healthcare Ltd PURIFICATION PROCESS FOR MONOCLONAL ANTIBODIES
JP6546178B2 (en) 2013-09-13 2019-07-17 ジェネンテック, インコーポレイテッド Compositions and methods for detecting and quantifying host cell proteins and recombinant polypeptide products in cell lines
MY176026A (en) 2013-09-13 2020-07-22 Genentech Inc Methods and composions comprising purified recombinant polypeptides
US10611794B2 (en) 2013-09-25 2020-04-07 Bioverativ Therapeutics Inc. On-column viral inactivation methods
EP3052640A2 (en) 2013-10-04 2016-08-10 AbbVie Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US10203327B2 (en) 2013-11-05 2019-02-12 Novartis Ag Organic compounds
WO2015073884A2 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
PL3094390T3 (en) 2014-01-16 2021-12-06 W.R. Grace & Co. - Conn. Affinity chromatography media and chromatography devices
TWI709570B (en) 2014-01-17 2020-11-11 美商健臻公司 Sterile chromatography and manufacturing processes
TWI709569B (en) 2014-01-17 2020-11-11 美商健臻公司 Sterile chromatography resin and use thereof in manufacturing processes
CN106061992A (en) * 2014-02-27 2016-10-26 新加坡科技研究局 Methods for reducing chromatin content in protein preparations by treatment with alkyl cations
JP6293907B2 (en) * 2014-03-10 2018-03-14 リヒター ゲデオン エヌワイアールティー. Purification of immunoglobulin using pre-cleaning process
EP3131589B1 (en) 2014-04-15 2023-05-17 Boehringer Ingelheim International GmbH Method and use for continuously inactivating a virus during manufacture of a biological product
US11389783B2 (en) 2014-05-02 2022-07-19 W.R. Grace & Co.-Conn. Functionalized support material and methods of making and using functionalized support material
WO2015197338A1 (en) 2014-06-24 2015-12-30 Ge Healthcare Bio-Sciences Ab Chromatography method
WO2016059602A2 (en) 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
MX2017005148A (en) 2014-11-06 2017-08-08 Hoffmann La Roche Fc-region variants with modified fcrn-binding and methods of use.
GB201506868D0 (en) 2015-04-22 2015-06-03 Ucb Biopharma Sprl Method for protein purification
KR102566292B1 (en) 2015-06-05 2023-08-10 더블유.알. 그레이스 앤드 캄파니-콘. Adsorbent bioprocessing clarifiers and methods of making and using the same
EP3359665A2 (en) 2015-10-09 2018-08-15 Genzyme Corporation Improved flare (flow cytometry attenuated reporter expression) technology for rapid bulk sorting
SG11201807824UA (en) 2016-03-11 2018-10-30 Boehringer Ingelheim Int Methods for continuously inactivating a virus during manufacture of a protein
KR102359192B1 (en) 2016-07-25 2022-02-04 세파론, 인코포레이티드 Affinity Chromatography Wash Buffer
AU2017323583A1 (en) 2016-09-07 2019-03-14 Glaxosmithkline Intellectual Property Development Limited Methods for purifying antibodies
SG10202103545PA (en) 2016-10-07 2021-05-28 Genzyme Corp Early post-transfection isolation of cells (epic) for biologics production
GB201622343D0 (en) * 2016-12-29 2017-02-15 Ge Healthcare Bio Sciences Ab Method in bioprocess purification system
CN110352201A (en) 2017-04-03 2019-10-18 免疫医疗公司 The subcutaneous administration of antibody drug conjugate for cancer therapy
CN111344410B (en) 2017-08-17 2023-09-15 济世易为生物有限公司 Method for purifying glycosylated proteins from host cell galectins and other contaminants
EP3762120A4 (en) * 2018-03-08 2021-09-01 Bio-Rad Laboratories, Inc. Anionic exchange-hydrophobic mixed mode chromatography resin
SG11202101860UA (en) 2018-08-31 2021-03-30 Genzyme Corp Sterile chromatography resin and use thereof in manufacturing processes
WO2020206063A1 (en) 2019-04-03 2020-10-08 Genzyme Corporation Anti-alpha beta tcr binding polypeptides with reduced fragmentation
HUP1900112A1 (en) 2019-04-04 2020-10-28 Richter Gedeon Nyrt Improvement of affinity chromatography of immunoglobulins by using pre-capture flocculation
TW202112818A (en) * 2019-06-10 2021-04-01 美商千禧製藥公司 METHODS OF PRODUCING AN ANTI-α4β7 ANTIBODY
CN114907430B (en) * 2022-06-21 2023-12-01 中国科学院过程工程研究所 mRNA separation and purification method
WO2024062074A1 (en) 2022-09-21 2024-03-28 Sanofi Biotechnology Humanized anti-il-1r3 antibody and methods of use

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639513A (en) * 1984-02-02 1987-01-27 Cuno Inc. Intravenously injectable immunoglobulin G (IGG) and method for producing same
JPH0284193A (en) 1988-06-08 1990-03-26 Miles Inc Removal of protein a from antibody preparation
WO1991002049A1 (en) * 1989-08-04 1991-02-21 Peter Grandics An integrated cell culture-protein purification system for the automated production and purification of cell culture products
WO1992004381A1 (en) 1990-09-11 1992-03-19 Scotgen Limited Novel antibodies for treatment and prevention of infection in animals and man
US5115101A (en) * 1988-06-08 1992-05-19 Miles Inc. Removal of protein A from antibody preparations
US5122373A (en) * 1983-03-16 1992-06-16 Immuno Aktiengesellschaft Immunoglobulin-g-containing fraction
US5164487A (en) * 1990-03-22 1992-11-17 Biotest Pharma Gmbh Manufacturing intravenous tolerable immunoglobulin-g preparation
WO1993002108A1 (en) 1991-07-25 1993-02-04 Idec Pharmaceuticals Corporation Recombinant antibodies for human therapy
US5190752A (en) * 1988-07-27 1993-03-02 Biotest Pharma Gmbh Intravenously administerable polyclonal immunoglobulin preparation containing igm and method of manufacture
US5219999A (en) * 1990-03-20 1993-06-15 Mitsubishi Rayon Co., Ltd. Immunoglobulin g and process for the production thereof
US5252216A (en) * 1992-03-24 1993-10-12 Smithkline Beecham Corporation Protein purification
US5268306A (en) * 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480959A (en) * 1990-07-24 1992-03-13 Seiko Epson Corp Semiconductor device
KR0160900B1 (en) * 1995-07-31 1998-12-15 배순훈 Drum motor device for vcr

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122373A (en) * 1983-03-16 1992-06-16 Immuno Aktiengesellschaft Immunoglobulin-g-containing fraction
US4639513A (en) * 1984-02-02 1987-01-27 Cuno Inc. Intravenously injectable immunoglobulin G (IGG) and method for producing same
US5268306A (en) * 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair
JPH0284193A (en) 1988-06-08 1990-03-26 Miles Inc Removal of protein a from antibody preparation
US4983722A (en) * 1988-06-08 1991-01-08 Miles Inc. Removal of protein A from antibody preparations
US5115101A (en) * 1988-06-08 1992-05-19 Miles Inc. Removal of protein A from antibody preparations
US5190752A (en) * 1988-07-27 1993-03-02 Biotest Pharma Gmbh Intravenously administerable polyclonal immunoglobulin preparation containing igm and method of manufacture
WO1991002049A1 (en) * 1989-08-04 1991-02-21 Peter Grandics An integrated cell culture-protein purification system for the automated production and purification of cell culture products
US5571720A (en) * 1989-08-04 1996-11-05 Grandics; Peter Integrated cell culture protein purification system for the automated production and purification of proteins
US5219999A (en) * 1990-03-20 1993-06-15 Mitsubishi Rayon Co., Ltd. Immunoglobulin g and process for the production thereof
US5164487A (en) * 1990-03-22 1992-11-17 Biotest Pharma Gmbh Manufacturing intravenous tolerable immunoglobulin-g preparation
WO1992004381A1 (en) 1990-09-11 1992-03-19 Scotgen Limited Novel antibodies for treatment and prevention of infection in animals and man
JPH06501152A (en) 1990-09-11 1994-02-10 スコットジェン・リミテッド Novel antibodies for the treatment and prevention of infections in animals and humans
WO1993002108A1 (en) 1991-07-25 1993-02-04 Idec Pharmaceuticals Corporation Recombinant antibodies for human therapy
US5252216A (en) * 1992-03-24 1993-10-12 Smithkline Beecham Corporation Protein purification

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Abe, et al., "Purification of monoclonal antibodies with light-chain heterogeneity produced by mouse hybridomas raised with NS-1 myelomas: application of hydrophobic interaction high-performance liquid chromotography," Journal of Biochemical and Biophysical Methods (1993) 27:215-227.
Danielsson, et al., "One-step purification of monoclonal IgG antibodies from mouse ascites," Journal of Immunological Methods (1988) 115:79-88.
Hakalahti, et al., "Purification of monoclonal antibodies raised against prostate acid phosphatase for use in vivo in radioimaging of prostatic cancer," Journal of Immunological Methods (1989) 117:131-136.
Whatman web article (Mar. 2007). *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41974E1 (en) 1990-10-17 2010-11-30 Glaxosmithkline Llc Method for culturing Chinese hamster ovary cells
US20080311681A1 (en) * 2004-12-23 2008-12-18 Ib Johannsen Antibody Binding Affinity Ligands
US9505803B2 (en) 2009-12-18 2016-11-29 Novartis Ag Wash solution and method for affinity chromatography
US11369896B2 (en) 2016-08-16 2022-06-28 Regeneron Pharmaceuticals, Inc. Methods for quantitating individual antibodies from a mixture
US11571636B2 (en) 2016-08-16 2023-02-07 Regeneron Pharmaceuticals, Inc. Methods for quantitating individual antibodies from a mixture
US11850535B2 (en) 2016-08-16 2023-12-26 Regeneron Pharmaceuticals, Inc. Methods for quantitating individual antibodies from a mixture
US11333642B2 (en) 2016-10-25 2022-05-17 Regeneran Pharmaceuticals, Inc. Methods and systems for chromatography data analysis
US11680930B2 (en) 2016-10-25 2023-06-20 Regeneron Pharmaceuticals, Inc. Methods and systems for chromatography data analysis
US11155575B2 (en) 2018-03-21 2021-10-26 Waters Technologies Corporation Non-antibody high-affinity-based sample preparation, sorbent, devices and methods
US11884698B2 (en) 2018-07-02 2024-01-30 Regeneron Pharmaceuticals, Inc. Systems and methods for preparing a polypeptide from a mixture

Also Published As

Publication number Publication date
NO319182B1 (en) 2005-06-27
KR100372209B1 (en) 2003-04-10
NZ281480A (en) 1998-06-26
USRE41595E1 (en) 2010-08-31
BR9507100A (en) 1997-09-16
HK1013806A1 (en) 1999-09-10
ATE218387T1 (en) 2002-06-15
PT746398E (en) 2002-10-31
DK0746398T3 (en) 2002-09-16
HU9602313D0 (en) 1996-10-28
DE69526929T2 (en) 2003-01-02
AU689552B2 (en) 1998-04-02
EP0746398A1 (en) 1996-12-11
CA2183888A1 (en) 1995-08-24
CZ248196A3 (en) 1997-04-16
EP0746398B1 (en) 2002-06-05
HU217850B (en) 2000-04-28
HUT74845A (en) 1997-02-28
US5429746A (en) 1995-07-04
NO963475L (en) 1996-10-21
JPH09509658A (en) 1997-09-30
WO1995022389A1 (en) 1995-08-24
AU1843395A (en) 1995-09-04
DE69526929D1 (en) 2002-07-11
USRE41555E1 (en) 2010-08-24
EP0746398A4 (en) 1997-10-08
MX9603637A (en) 1997-04-30
CN1146730A (en) 1997-04-02
ES2177632T3 (en) 2002-12-16
JP4198751B2 (en) 2008-12-17
NO963475D0 (en) 1996-08-21
CA2183888C (en) 2008-06-17
CZ292001B6 (en) 2003-07-16
ZA951372B (en) 1995-10-24
SI0746398T1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
USRE40070E1 (en) Antibody purification
AU2004286938B2 (en) Removal of high molecular weight aggregates using hydroxyapatite chromatography
JP6335838B2 (en) Method for purifying a target protein from one or more impurities in a sample
CA2582113C (en) A method of antibody purification
US5118796A (en) Efficient large-scale purification of immunoglobulins and derivatives
US5252216A (en) Protein purification
US20080058507A1 (en) Method For The Removal Of Aggregate Proteins From Recombinant Samples Using Ion Exchange Chromatography
US20160272673A1 (en) Isolation and purification of dvd-igs
Tugcu et al. Maximizing productivity of chromatography steps for purification of monoclonal antibodies
WO2007108955A1 (en) Protein purification
NZ269375A (en) Chromatographic method of purifying complement receptor protein
Necina et al. Capture of human monoclonal antibodies from cell culture supernatant by ion exchange media exhibiting high charge density
JP2015524416A (en) Method for purifying albumin
CN115975046A (en) Method for purifying fusion protein

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLAXOSMITHKLINE LLC, PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:SMITHKLINE BEECHAM CORPORATION;REEL/FRAME:023731/0740

Effective date: 20091027